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Executive Summary 

This report presents the results of the Inshore Dolphin Monitoring Program (IDMP) 

for the Port of Townsville Limited (POTL) Channel Upgrade Project (CU Project). The data 

collected in 2024 during boat and land-based surveys were summarised and compared to 

previous years (2019-2023). The study investigated any changes in coastal dolphin 

abundance and distribution beyond natural spatial and temporal variations since 2019. 

Monitoring of Australian snubfin and humpback dolphins spanned the pre-construction 

(2019), construction (2020–2023), and post-construction (2024) phases of the CU Project. 

Surveys were conducted annually during June–July, beginning in June 2019. 

As in previous years, in 2024 the IDMP methodology involved boat-based photo-

identification surveys of dolphins in Cleveland and Halifax Bays and visual land-based 

surveys of dolphins from Berth 11 within the Port of Townsville in Cleveland Bay. Data 

analysis of dolphin sighting data collected during boat surveys involved capture-recapture 

and species distribution modelling methods to assess differences in population 

demographics and spatial patterns across survey years (2019-2024). Land-based survey 

data was analysed using Bayesian p-values and Generalized Additive Models (GAMs) to 

assess overall differences in dolphin occurrence across all six years (2019-2024) in relation 

to anthropogenic activities associated with the CU project in Cleveland Bay and that 

coincided with the dolphin monitoring, including rock dumping (associated with rock wall 

construction in 2020), capital dredging (i.e., dredging carried out by a backhoe dredger in 

2022 and 2023), and pile driving (2022). We also assessed the dolphins’ patterns of 

occurrence in relation maintenance dredging (i.e., routine dredging carried out by a trailing 

suction hopper dredger every year to remove material that has drifted into the channel over 

time and limits the access of ships) and vessel traffic not associated with CU Project . 
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Three vessels undertook simultaneous, predetermined line-transect surveys over 18 days 

between June 1 and July 15, 2024, covering 1596.4 km in Cleveland Bay and 1457.5 km in 

Halifax Bay. We observed a total of 35 groups of snubfin dolphins (9 in Cleveland Bay and 

26 in Halifax Bay), 61 groups of humpback dolphins (28 in Cleveland Bay and 33 in Halifax 

Bay) and 16 groups of bottlenose dolphins (6 in Cleveland Bay and 10 in Halifax Bay). 

Twenty-five individual snubfin and 49 humpback dolphins were photo-identified in Cleveland 

Bay, and 52 snubfin and 84 humpback dolphins were photo-identified in Halifax Bay in 2024. 

At the same time, we completed a total of 12 days of visual survey scans from the land-

based observation point on Berth 11 between 4 and 18 of June. Humpback dolphins were 

observed on 11 days and snubfins on 5 days of the 12 survey-days. Bottlenose dolphins 

were not seen on any day. 

The total estimated abundance of snubfin dolphins in Cleveland Bay in 2024 was 33 

(SE = 10.38, 95% CI = 18–61) and 60 (SE = 3.87, 95% CI = 52–68) in Halifax Bay. The 

abundance of snubfin dolphins in Cleveland Bay in 2024 marks a recovery to pre-2022 levels 

(31 in 2019, 42 in 2020, and 34 in 2021) after declines in 2022 (14∗) and 2023 (27∗). The 

number of snubfin dolphins in Halifax Bay have been higher than those in Cleveland Bay 

over the last three years with 111 in 2022, 73 in 2023, and 60 in 2024. The movement rate 

from Cleveland Bay to Halifax Bay was 0.41 (i.e. an estimated 41% the dolphins moved from 

Cleveland Bay to Halifax Bay) between 2023 and 2024, consistent with 2021–2022, 

indicating continued high emigration from Cleveland Bay to Halifax Bay through 2024. 

Movement from Halifax Bay to Cleveland Bay between 2023 and 2024 was 0.27 indicating 

a relatively high rate of exchange (i.e. an estimated 27% of dolphins moved from Halifax 

Bay to Cleveland Bay), comparable to the levels observed between 2019 and 2021.The 

number of humpback dolphins present in Cleveland Bay and Halifax Bay in 2024 was 68 

 
∗ The estimates for Cleveland Bay in 2022 and 2023 are considered unreliable and are likely to be too overestimated (see results 
section of report). 



  

7 
 

(SE = 7.95, 95% CI = 54–85) and 122 (SE = 11.80, 95% CI = 101–148), respectively. As in 

previous years, there were more humpback dolphins present in Halifax than in Cleveland 

Bay in 2024. Humpback dolphin numbers in Cleveland and Halifax Bays have increased 

over the past three years compared to the first three years of monitoring. In Cleveland Bay, 

numbers increased from 20 in 2019 to 68 in 2024, while in Halifax Bay they rose from 66 to 

122 over the same period. .Between 2019 and 2024, the average annual movement rate 

between Cleveland and Halifax Bays was approximately equal in both directions, at 0.21, 

indicating a relatively high level of exchange, with an estimated 21% of dolphins moving 

between the two bays each year. Species distribution models of the spatial occurrence and 

relative density of snubfin dolphins reflect the abundance patterns observed across the 

years in the bays. The 2024 spatial occurrence and relative density of snubfin dolphins show 

a recovery from the low occupancy and density of 2022–2023 in Cleveland Bay, resembling 

2019–2021 patterns with higher concentrations near the southwestern nearshore of 

Cleveland Bay around the Port of Townsville. The spatial predictions for snubfin dolphins in 

Halifax Bay are in line with predictions from previous years, showing high-occupancy and 

density around and north of Toomulla beach and between Toolakea beach and Cape 

Pallarenda. For humpback dolphins, the spatial occurrence and relative density predictions 

from the 2024 model continue to show high occupancy and density to the north and to the 

east of Port of Townsville, along the shore of Cleveland Bay, as well as a large expanse of 

high-occupancy and density between Toomula beach and Cape Pallarenda (including both 

inshore and offshore waters) in Halifax Bay.  

Generalised likelihood ratio tests supported the full model that included disturbance 

effects for both snubfin and humpback dolphins. For humpback dolphins, the relative 

variable importance analysis indicated maintenance dredging as the most impactful 

disturbance, with a small decrease in density of species as distance to maintenance 
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dredging increases. For snubfin dolphins, the relative variable importance analysis indicated 

rock-dumping as key disturbance, with the species density decreasing as distance to rock-

dumping increased. 

The quantitative assessment of differences in dolphin patterns of attendance to the 

port area between 2024 and all previous years indicated that the number of encounters of 

humpback dolphins were in line (or greater) than the expectations of previous years (all 

Bayesian p-values were close to 1.0). For snubfin dolphins, Bayesian p-values indicated 

that the number of encounters around the port was higher in the earlier years (2019–2020) 

compared to 2024. The number of encounters in 2021 was similar to those in 2024, while 

the 2024 encounters were comparable to—or higher than—those recorded in 2022 and 

2023, with all Bayesian p-values close to 1.0. Analysis of land-based observations of dolphin 

presence with respect to disturbances around the port revealed that humpback dolphin 

presence was unaffected by capital dredging, maintenance dredging, or piling but decreased 

during active rock-dumping. Snubfin dolphin occurrence presence was unaffected by 

maintenance dredging and piling, increased during rock dumping; but decreased when 

capital dredging was present (dredging vessel is at the site, regardless of whether it is 

actively operating) and/or active (refers to a period when dredging operations were actively 

occurring-mechanical removal of sediments).  

Overall, monitoring over the past six years reveals a clear increase in humpback 

dolphin abundance in both Cleveland and Halifax Bays, with consistently higher numbers 

observed in Halifax Bay. This trend highlights the ecological importance of the region for the 

Townsville population, and is possibly influenced by factors such as habitat quality, prey 

availability, and lower anthropogenic disturbance in Halifax Bay. In Cleveland Bay, the 

increasing trend in humpback dolphin numbers may reflect their capacity to exploit altered 

environments, including potential prey aggregation around man-made structures, and may 
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also represent a form of competitive release following the decline of sympatric snubfin 

dolphins.. The potential ability of humpback dolphins to persist under both favourable natural 

conditions (as in Halifax Bay) and in more modified habitats (as in Cleveland Bay) 

underscores the species’ ecological plasticity and highlights the importance of spatial and 

species-specific responses to environmental change in shaping local dolphin populations. 

In contrast, the occurrence and abundance of snubfin dolphins in Cleveland Bay 

decreased in 2022 and 2023, coinciding with CU capital dredging and piling activities, but 

appeared to return to pre-construction levels in 2024 after construction activities ceased. 

The return of snubfin dolphins to numbers similar to those observed in 2019, the baseline 

year, suggests that the population declines recorded in 2022 and 2023 may have been 

temporary rather than indicative of long-term population declines. This recovery could imply 

that the snubfin population is resilient to certain natural and anthropogenic stressors, 

provided these pressures are mitigated or removed over time. The observed trends 

underscore the importance of minimizing anthropogenic disturbances in critical habitats and 

maintaining connectivity between adjacent areas like Cleveland and Halifax Bays, which 

provide refuge and support population resilience. 

While our findings reveal correlations between dolphin occurrence patterns and the 

timeline of port construction activities, these associations do not imply direct causation. The 

observed decline in snubfin dolphin abundance and their reduced presence around the port 

area in 2022 and 2023 may reflect the influence of various unmeasured factors, including 

extrinsic drivers such as climatic variability, interspecific interactions, and dispersal 

limitations, as well as intrinsic factors like prey availability, dietary preferences, and habitat 

specialization. Furthermore, delayed responses to environmental and anthropogenic 

pressures are common among marine mammals, suggesting that current patterns could 

result from cumulative or lagged impacts of earlier disturbances—such as the 2021 
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completion of the rock wall for the 62-ha port reclamation area. Despite these uncertainties, 

the timing of capital dredging and piling activities coincided with species-specific changes, 

particularly in snubfin dolphins, indicating a potential ecological link. In light of these 

correlations and the inherent uncertainty surrounding their drivers, applying the 

precautionary approach to species management is essential. This proactive strategy 

prioritizes the prevention of potential harm to species and their habitats by advocating for 

protective measures even when causal relationships are not definitively established.  

Continued monitoring into the future is essential to assess whether the increased 

presence and abundance of snubfin dolphins in Cleveland Bay in 2024, relative to the 2022 

and 2023 period and in comparison to pre-construction conditions observed in 2019, 

represents the beginning of a positive trend or simply a short-term fluctuation. 

Understanding these dynamics is critical for informing conservation planning and policy, 

particularly as port operations and development/construction will continue into the future. 
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1. Introduction 

The Townsville Port Channel Upgrade Project (CU Project) is a jointly funded project 

of the Queensland and Australian Governments and Port of Townsville Limited (POTL). The 

CU project is the first stage of the long-term Port Expansion Project and was delivered over 

a period of six years from 2019 to 2024. The expansion of the Port of Townsville is needed 

to accommodate forecast growth in trade at the port and address current capacity 

constraints. As part of the environmental approvals under the Commonwealth Environment 

Protection and Biodiversity Conservation Act 1999 (EPBC Act) for the CU project, POTL 

was required to develop and implement an Inshore Dolphin Monitoring Program (IDMP). 

The aims of the IDMP are to establish baseline information and monitor and report 

on changes, beyond natural spatial and temporal variation, in the distribution, abundance, 

habitat use and behaviour of the Australian snubfin dolphin (Orcaella heinsohni) and the 

Australian humpback dolphin (Sousa sahulensis) in association with the CU Project 

construction activities. Both species are listed as ‘Vulnerable’ under the EPBC Act, the 

International Union for Conservation of Nature (IUCN) (Parra et al. 2017a, Parra et al. 

2017b), and the Queensland Nature Conservation Act 1992; and as ‘Near Threatened’ in 

the Action Plan for Australian Mammals 2012 (Woinarski et al. 2014). The IDMP was 

implemented over pre-, during and post-CU Project construction activities. The findings from 

the IDMP were used to inform management decisions for the project on an ongoing basis. 

The specific objectives of the Inshore Dolphin Monitoring Program are to: 

1. Objective One: Develop an Inshore Dolphin Monitoring Program consistent with the 

Coordinated National Research Framework to inform the Conservation and Management of 

Australia's Tropical Inshore Dolphins (Department of the Environment, 2015), or subsequent 

document; and that provides consistent and scientifically valid monitoring methodologies to 
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be able to determine trends and identification of stressors with the potential to cause adverse 

impacts for these species. This program is to cover pre-, during and post-construction 

timescales as separate identified study stages and reporting deliverables. 

2. Objective Two: Provide a baseline assessment on the distribution, abundance and 

habitat use of the Australian snubfin dolphin and the Australian humpback dolphin species 

in areas of Cleveland Bay that may be directly or indirectly impacted by the CU Project and 

adjacent non-impacted sites. 

3. Objective Three: Monitor and report on changes, beyond natural spatial and temporal 

variation, to the population and behaviour of the Australian snubfin dolphin and the 

Australian humpback dolphin throughout construction, pile driving operations and dredging 

activities for the CU Project, and a sufficient period of time post-construction to identify any 

changes in population and behaviour of the identified dolphin species as a result of the said 

activities. 

4. Objective Four: Provide recommendations on key areas of adverse impact and 

potential mitigation measures, including the identification of residual adverse impacts in 

Cleveland Bay which cannot be managed.  

5. Objective Five: Contribute to improving public awareness during the works on the 

inshore dolphin populations in Cleveland Bay. 

Monitoring of Australian snubfin and humpback dolphins spanned pre-, during, and 

post-construction phases of the CU project. Surveys were conducted annually over June-

July, beginning in June 2019. The 2019 inshore dolphin surveys constituted the pre-

construction phase as no construction activity occurred during this period. The period 

between 2020 and 2023 corresponded to the construction phase. The 2020 inshore dolphin 
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surveys corresponded with the initial marine construction activities of the rock wall, which 

was completed in 2021and formed the perimeter of the 62ha Port Reclamation Area as part 

of the Channel Upgrade project. Construction activities associated with these included the 

placement of four different types of rock material: primary armour, secondary armour, core 

rock and ballast rock to the north of the existing East Port, at the mouth of Ross River. Pile 

driving activities for the CU Project started in 2021 and were limited to the development of 

the temporary unloading facility (TUF), mooring infrastructure for the discharge of dredge 

material from barges to the reclamation area and for the re-alignment of the channel 

navigational beacons. TUF piling was intermittent from Aug 2021 to Early Jan 2022, and 

beacon piling (20mins per day and not on consecutive days) was carried out in June/July 

2022 and Feb 2024.Capital dredging activities (using a backhoe dredge) associated with 

the widening of the shipping channel started in 2022 and continued in 2023 in Cleveland 

Bay. By the 2024 survey period, all in-water CU Project construction activities had ceased, 

marking the post-construction monitoring phase. In line with the scope of work, the objective 

of this report is to provide a summary of the fieldwork conducted and the results of the 2024 

inshore dolphin monitoring program, and report on any changes, beyond natural spatial and 

temporal variation, in coastal dolphin abundance and distribution in association with the CU 

Project since 2019.  

Opportunistic sightings of other marine mammals (i.e., bottlenose dolphins, dugongs, 

and humpback whales) were recorded during surveys and are presented in this report as 

point distribution maps. 
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2. Methods 

2.1 Data collection 

 Scientific permits and animal ethics 

The 2024 inshore dolphin monitoring program was conducted under Scientific Permit 

G19/42001.1 issued by the Great Barrier Reef Marine Parks Authority, permit SPP19-

001808 from the Queensland Department of Environment and Science, and Animal ethics 

approval E477/18 from the Animal Ethics Committee of Flinders University.  

 Training 

All IDMP personnel received boat and land safety inductions and were trained in 

survey techniques and protocols between the 28th and the 31st of May 2024, which involved 

testing all boat and land-based equipment and data collection procedures. 

 Vessel-based survey methods 

As described in detail in the IDMP developed for the CU-Project, the boat-based 

methods have been built on a Robust Design sampling structure (Pollock et al. 1990, Kendall 

2013) of one primary sample per year (June-July), consisting of six secondary samples (i.e. 

a complete survey) at Cleveland Bay and Halifax Bay (Fig. 1).  
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Figure 1. Map of Cleveland and Halifax Bays study areas including inshore and offshore 

transects, Ross Creek transect, and environmental stations.  

Sampling methods followed standard procedures applied in capture-recapture 

studies of inshore dolphin studies (Parra et al. 2006b, Cagnazzi et al. 2011). We used 

automated survey design algorithms (Strindberg and Buckland 2004) implemented in the 

software program Distance (Thomas et al. 2009) to design a systematic random line transect 

survey with regular line spacing (1.6 km apart and at 45º to the shore) covering both inshore 

and offshore areas within each of the survey sites (Fig. 1). Systematic line spacing results 

in even spatial distribution of sampling effort, uniform coverage probability and better 

information on dolphins’ spatial distribution and environmental variables than random 

designs (Du Fresne et al. 2006, Thomas et al. 2007). Survey priority was given to inshore 
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areas over offshore areas depending on weather conditions, as both snubfin and humpback 

dolphins occur mainly in inshore areas in the region. 

As in previous years, we used three rigid hull inflatable boats (RHIBs) (Fig. 2) to 

simultaneously survey different areas of each bay during June-July 2024 and complete a 

full survey of each bay within one day. All surveys were conducted in mostly good sighting 

conditions (Beaufort Sea State ≤ 3 and no rain) between 07:00 and 18:00, depending on 

suitable conditions. A crew of three observers and a skipper systematically searched for 

dolphins forward of each vessel’s beam with the naked eye. Once an individual or group of 

dolphins was sighted, on-transect effort was suspended and the dolphins were approached 

slowly (<5 knots) to within 5-10m to carry out photo-identification and record GPS location, 

species identification, group size (minimum, best and maximum estimates), group age 

composition (calf, juvenile, adult as defined by Parra et al. 2006a), and predominant group 

behaviour (Mann 1999a). Groups were defined as dolphins with relatively close spatial 

cohesion (i.e., each member within 100 m of any other member) involved in similar (often 

the same) behavioural activities. Photographs of individual animals were taken using Nikon 

D750 digital SLR cameras fitted with 50-500 telephoto zoom lenses. After all, or most 

individuals in the group were photographed or dolphins were lost, transect effort resumed at 

the location on the transect line where the dolphins were first sighted. Data on environmental 

variables (water depth, sea surface temperature, turbidity, and salinity) were collected in situ 

using a U-52 Horiba multi-parameter water quality meter at the location where each group 

of dolphins was first encountered, at set points along the transect line, and at the beginning 

and end of each transect leg (i.e., environmental stations, Fig. 1). All data on survey 

conditions, survey effort and marine mammal sightings were recorded in handheld tablets 

using CyberTracker software (http://www. cybertracker.org/). 
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Figure 2. Rigid hull inflatable boats a) RV Manta, b) RV Koopa and c) RV Coda used for 

boat-based surveys of inshore dolphins in the Townsville region during June and July 2024. 

Research team conducting surveys of inshore dolphins in Cleveland Bay onboard vessel 

Manta (d). 

 Land-based survey methods 

Land-based observations of dolphin presence/absence around the port were carried 

out from Berth 11, an elevated platform (LAT + 9. 5m above water) within the Port of 

Townsville (Fig. 3). Berth 11 offers a reasonable vantage point over coastal waters adjacent 

to the Port of Townsville that were previously identified as a dolphin high use area (Parra 

2006). This area also coincides with the CU project area for land reclamation and widening 

of the channel at the harbour entrance (Fig. 3). In 2024, land-based observations were 

limited to the month of June (4-18th of June) due to the closure of Berth 11 from June 19 to 
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August 1 for shipping schedules and required maintenance on the ship loader. Land-based 

observations of dolphin presence/absence around the port in 2020 were carried out at the 

entrance to Berth 11 (~400m south of original observation point) due to shipping activities, 

and a three-week maintenance shutdown of the ship loader. Conducted over time, this 

method enabled us to determine the dolphins’ occurrence (presence/absence) in this area 

and assess their response to CU project construction activities including capital dredging, 

rock dumping and pile driving operations (Pirotta et al. 2013). 

Visual scan sampling every 15 min was used to record the occurrence 

(presence/absence) of dolphins (Altmann 1974, Mann 1999b), covering all visible water 

within a radius of approximately 1km around the observation point at Berth 11. Observations 

were conducted by a team of two-three trained observers between 06:00 and 18:00 

depending on weather conditions. Visual observations were mostly undertaken during good 

weather conditions (i.e., Beaufort sea state ≤ 3 and no rain). Each observer scanned to the 

left or the right-hand side of the observation point with the aid of 7 x 50 binoculars and the 

naked eye. During each visual scan we recorded, within a radius of approximately 1km 

around the observation point, the presence or absence of dolphins, their group size, age 

composition, behaviour, the number, and types of boats traversing the area, 

presence/absence of maintenance dredging (i.e., routine dredging, not associated with CU 

construction activities, carried out by a trailing suction hopper dredger every year to remove 

material that has drifted into the channel over time and limits the access of ships), and the 

presence or absence of CU construction activities including rock dumping (associated with 

rock wall construction in 2020), capital dredging (i.e., dredging carried out by a backhoe 

dredger in 2022 and 2023), and piling (beacon pile driving carried out in June/July 2022).  
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Figure 3. Location of (a) land observation point on Berth 11 within the Port of Townsville, 

and (b) researchers conducting dolphin surveys from the berth.  

2.2 Data analysis: Population demographics 

 Photo-identification  

Capture-recapture histories of distinctive individuals were used to estimate 

abundance of Australian snubfin and humpback dolphins across all years of study using 

capture-recapture population models (Williams et al. 2002, Amstrup et al. 2005). An 

individual was considered ‘captured’ when it was first photo‐identified, and ‘recaptured’ when 

photo‐identified thereafter. Individual snubfin and humpback dolphins were identified based 

on the unique natural marks on their dorsal fins (Parra and Corkeron 2001, Parra et al. 

2006a). 

All photographs taken during boat surveys were examined and subjected to a strict 

quality and distinctiveness grading protocol before matching and cataloguing to minimise 

misidentification (Hunt et al. 2017). Only high-quality photographs of distinctive individuals 

were used in analyses. We used DISCOVERY (version 1.2.) software to process, match, 

catalogue and manage all the photo‐identification data (Gailey and Karczmarski 2012). 
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Both “on effort” and “off effort” sightings were combined and included in capture- recapture 

(CR) analyses. Capture history data were analysed using the program MARK (White and 

Burnham 1999). 

Note that as we add a new year to the dataset and photo-identification catalogue is 

revised and corrected for any misidentification error (i.e., false negative: one individual is 

identified as two, false positive: two individuals are identified as one). the capture-

recapture models are updated, along with the corresponding annual population 

demographic estimates. 

  Capture-recapture models 

The Multistate Closed Robust Design model (MSCRD, Brownie et al. 1993, Nichols 

and Coffman 1999, Kendall and Nichols 2002, Kendall 2013) was employed for analysis of 

the capture-recapture data to estimate abundance, apparent survival, and movements 

between sites and temporary emigration between primary samples. The MSCRD extends 

the Closed Robust Design model (CRD, Pollock 1982, Kendall and Nichols 1995, Kendall 

et al. 1995, Kendall et al. 1997) to include multiple states following the multistate model for 

recapture data (Arnason 1972, 1973, Brownie et al. 1993, Schwarz et al. 1993). 

The MSCRD model provides estimates of: 

1. Apparent survival (𝜙𝜙�) between primary samples (probabilities of being 

alive and present in the sample area) for both sites. 

2. Movements between sites (ψ MS) and temporary emigration (ψ TE) 

between primary samples (probabilities of movement between states). Temporary 

emigration is included among the movements in the MSCRD by defining an 

‘unobservable’ state for dolphins that are temporarily absent (offshore or elsewhere) 

during a primary sample. There are two parameter estimates for temporary 
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emigration in any primary sample: the probability of being absent from the sampling 

area in that primary sample (emigration) and the probability of returning in that 

primary sample after an absence (reimmigration). 

3. Abundance at each primary sample (N, number present on a site) for 

both sites. 

With two sites, three states were defined: two observable states on the two sites (CB 

and HB) and one unobservable state (U) for temporary absence from both sites. Dolphins 

may move between all three states (or stay where they were) between consecutive pairs of 

primary samples, with such movements being modelled as transition probabilities. 

Different patterns or structures of temporary emigration may be estimated by applying 

constraints to the corresponding temporary emigration and (re) immigration parameters. An 

implication of estimating these separately is that the probability of emigration in an interval 

is related to the probability of emigration in the previous interval or has a Markovian temporal 

structure. When the probability of emigration in an interval is equal to the probability of 

staying away after a previous absence, whether an animal comes or goes is a random 

process and the temporary emigration structure is referred to as ‘random’. When the 

probability of emigration in an interval is equal to the probability of immigration after a 

previous absence there is an even flow of animals into and out of the sample area and the 

temporary emigration structure is referred to as ‘even flow’. Kendall (2013) may be the most 

accessible account of these temporary emigration structures. 

Capture-recapture studies typically yield an estimate of apparent survival or the 

probability of both remaining alive and available for recapture in the sample area. Estimates 

of the probability of remaining alive (biological survival) must be made by other means. If 

estimates of both apparent and biological survival are available however, an estimate may 

be made of the probability of permanent emigration from the sample area. More formally, an 
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estimate of the probability of permanent emigration 𝐸𝐸� may be derived as 𝐸𝐸� = 1 − 𝜙𝜙�

𝑆̂𝑆
 where 𝜙𝜙� 

is an estimate of the probability of apparent survival and 𝑆𝑆 �  is an estimate of the probability 

of biological survival. 

 Life history data on Australian inshore dolphins that might support an estimate 

of the rate of biological survival for a species are extremely limited. Studies on the Indo-

Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary in southern China 

(Huang et al. 2012) yielded an estimate of biological survival of 0.97 (95% CI = 0.96-0.98) 

per annum. The Indo-Pacific humpback dolphin is a close relative of the Australian 

humpback dolphin and the biological survival rates of the two species may be expected to 

be similar. The adult survival rate for the Australian snubfin dolphin (Orcaella heinsohni) was 

reported as 0.95 per annum by Taylor et al. (2007). 

 MCRD Data preparation 

The MSCRD requires data identifying whether each individual dolphin was or was 

not captured in each combination of primary and secondary sample (PS x SS). There were 

many examples of the same dolphins having been captured more than once in the same 

primary and secondary samples. These repeat captures arose from the simultaneous 

operation of three boats and because of within-day movement of dolphins between the 

transects where they were first captured to other transects being surveyed later in the day. 

There was a mixture of captures made ‘on-effort’ (while following the pre-defined 

transects) and captures made ‘off-effort’ on transit between transects. Repeat captures in 

the same primary and secondary samples were redundant and deleted from the data prior 

to model fitting. Deletions were made in two steps: when repeat captures were made both 

on- and off-effort, the on-effort captures were retained; and among the remaining captures, 

the capture made first was retained. 
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The MSCRD models the data from both sites simultaneously and requires that no 

dolphin is recorded as having been captured on both sites in the same primary sample. 

There were a few examples of dolphins having moved between the sites within a primary 

sample and having been captured on both. The capture histories for these dolphins were 

modified to show all captures within each primary sample as having been made on the site 

where they were first captured. 

The survey design specified six secondary samples (SS) on each site in each 

primary sample (PS). Pairs of secondary samples were taken consecutively on each site. 

An even number of secondary samples was planned in anticipation of small numbers of 

captures being made to allow a strategy of collapsing each consecutive pair of secondary 

samples into one (1&2=1, 3&4=2, 5&6=3) to increase the per secondary sample numbers 

of captures (Table 6). However extra time was allocated for sampling to allow for days lost 

due to poor weather and these days were used to complete further secondary samples as 

the opportunity arose. 

 Goodness of fit  

It is necessary to assess whether the data collected are consistent with the statistical 

model proposed for their analysis, i.e., to assess the goodness of fit of the data to the model. 

We used program U-CARE (Choquet et al. 2005) for goodness of fit tests. The tests were 

performed on data collapsed to primary samples; for models for a single site, the tests 

assume a Cormack-Jolly-Seber (CJS; Lebreton et al. 1992) type of model, and for MSCRD 

models they assume a multistate version of the model that allows for transitions between 

states (JollyMove; Brownie et al. 1993). If there is significant lack of fit, it is necessary to 

adjust the estimates using an estimate of the variance inflation factor 𝑐̂𝑐 and a version of AICc 

for over dispersed data (QAICc; Burnham and Anderson 2002). The variance inflation factor 
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𝑐̂𝑐 was estimated as the ratio of the overall test statistic for the model from U-CARE and the 

model degrees of freedom. 

 Model selection – AIC 

The modelling process involves fitting a set of models with alternative parameter 

structures and comparing them for fit to data and parsimony. Models are compared with the 

Akaike Information Criterion corrected for small sample sizes (AICc, Burnham and Anderson 

2002), with smaller values of AICc indicating better fitting models, and with AICc weights, 

which measure the relative likelihoods of the models in the set. When one model in the set 

has a clearly lower AICc than all others and has attracted the major proportion of the AICc 

weight, the parameter estimates from this ‘best’ model are reported; when several models 

have similar AICc values and share the AICc weight, model-averaging may be applied 

(Buckland et al. 1997) whereby weighted averages of the parameter estimates from several 

models are reported. 

 Estimating the total population size 

Not all individuals have sufficiently distinctive marks to support unambiguous 

identification. Only distinctively marked individuals may be ‘captured’ in photographs and 

capture-recapture models can only yield estimates of the number of distinctively marked 

members in a population. This estimate may be adjusted to yield an estimate of total 

population size by dividing by an estimate of the proportion of distinctively marked 

individuals in the population as described below. 

For each species, the number of individuals depicted by good quality photographs (

tP ) and, of those, the number that depicted a distinctively marked individual ( mP ) was 

recorded for each group encounter. A binary logistic model was fitted to the data on 
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distinctive and non-distinctive dolphins to estimate the marked proportion (𝑀𝑀�𝑝𝑝) of the 

population for each species.  

The total abundance (𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) of each population for any sampling period and site may 

be estimated by dividing the estimated abundance of marked dolphins (𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) by the 

estimated marked proportion (𝑀𝑀�𝑝𝑝): 

𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀�𝑝𝑝
, with S�𝐸𝐸(𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

�𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
2 +

𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀�𝑝𝑝)

�𝑀𝑀�𝑝𝑝�
2  

Log-normal confidence intervals for abundance estimates may be calculated 

following Burnham et al. (1987): 

𝑁𝑁�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑁𝑁�

𝐶𝐶 and 𝑁𝑁
�𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑁𝑁� ⋅ 𝐶𝐶, where 𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑧𝑧𝛼𝛼

2
�𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 �1 + �

𝑆̂𝑆𝐸𝐸(𝑁𝑁�)
𝑁𝑁�

�
2

�� 

2.3 Data analysis: Spatial distribution 

 Modelling framework 

Our goal was to model dolphin’s spatial distribution in the study area before (2019) 

during (2020-2023) and after (2024) CU project construction activities. We aim to gather 

quantitative indicators of differences in the spatial distribution of snubfin and humpback 

dolphins across years. We use a large collection of quantitative methods to do this, from 

descriptive statistics to likelihood ratio tests. Note that as we add a new year to the dataset 

the species distribution models are updated, while considering interannual variation, and so 

are the corresponding spatial predictions and related statistics for every year.  

We also aimed to evaluate whether CU project construction activities (e.g., rock 

dumping, capital dredging, pile driving) were associated with dolphin’s spatial distribution.  
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Our evaluations were primarily through model-based inference and descriptions of 

models’ behaviour. We did the following: 

1. Estimated covariates’ “Relative Variable Importance” for a range of human-activities 

(boats presence, presence of anthropogenic disturbances) and environmental 

covariates (SST, salinity). 

2. Calculated likelihood-ratios between models with anthropogenic disturbances vs 

models without. 

3. Marginal plots of covariates’ functional relationship with species’ abundances  

4. Assessed models’ predictive performance (e.g., ROC-AUC and PR-AUC scores). 

As was detailed in the previous report, the modelling framework used for species 

distribution modelling was the high-performance “boosting” technique (Bühlmann and Yu 

2003, Schmid and Hothorn 2008), specifically emulating the works of Kneib et al. (2009) and 

Hothorn et al. (2010). The method is an ensemble method that automatically performs model 

selection among different sub-models, such as spatial splines, temporal splines, spatial 

autocorrelation, and linear effects, etc. The method also addresses many common data-

challenges, including small samples size and high-dimensionality (“small-n high-p 

problem”), and high multicollinearity among spatial covariates (Oppel et al. 2009, Schmid et 

al. 2010, Bühlmann et al. 2013, Mayr et al. 2014). It is also related to other high-performance 

methods (Meir and Rätsch 2003, Chen and Guestrin 2016) and can decompose variation 

into spatial, temporal, and observational covariates, as motivated by Hothorn et al. (2010). 

Species distribution models for 2019, 2020, 2021, 2022, 2023 and 2024 incorporated 

9 sub-components, representing different groupings of covariates, and wrapped in different 

functional forms (Table 1). The method is supposed to only select the most important sub-

models. The unimportant sub-models are either “shrunk” to have only a small contribution 

to the overall ensemble’s prediction, or they are ignored altogether. The various components 

were: 
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1. Main effect penalized least squares, one for each covariate representing weather 

conditions, ecological variables, and boats. 

2. Interaction penalized least squares, one for each covariate representing ecological 

variables and boats, including an interaction with “year” (i.e., different slopes and 

intercepts for 2019, 2020, 2021, 2022, 2023 and 2024). 

3. Decision-tree (1), including covariates for weather conditions. 

4. Decision-tree (2), including covariates for ecological variables, boats, and the distance-

to-disturbance covariates (rock dumping, capital dredging and piling). 

5. The same as base-learner #2 plus “year” as a potential interacting covariate. 

6. Main-effect univariate splines for time-of-day and time-of-year. 

7. Interaction univariate splines for time-of-day and time-of-year, including “year” as an 

interaction term (i.e., different marginal effects for each year). 

8. Main-effects bivariate splines for large-scale spatial trends. 

9. Interaction bivariate splines for large-scale spatial trends; including “year” as an 

interaction term (i.e., different marginal spatial trends per year). 

As in previous years, we chose to discard the radial basis function (used to model small-

scale spatial autocorrelation). These were discarded because: i) they become 

computationally infeasible with more interaction terms (per year effects); ii) they were not 

selected in past-years’ best models (particularly 2022), and iii) they are functionally similar 

to bivariate spatial splines. 



Table 1. Covariates considered for the species distribution modelling of Australian Snubfin and humpback dolphins in Cleveland and 

Halifax Bays between 2019 and 2024 with columns indicating the: i) type of sub-model used for each covariate group within the larger 

ensemble-of-models, ii) the data-source for training the ensemble and iii) data source at prediction locations (how the covariate was 

extrapolated outside the points of data-collection), and iii) data source at prediction locations (how the covariate was extrapolated 

outside the points of data-collection). 

Sub-models Model type Covariate Covariate description Source at training Source at prediction 

1,2, & 3 

Main Effect 
PLS, 

Interaction 
PLS, and 

Decision trees 

BSS Beaufort Sea-State (BSS), 5-point ordinal scale In-situ estimate Constant, average 
conditions 

Swell Estimated swell height In-situ estimate Constant, average 
conditions 

Visibility Visible distance, 3-point ordinal scale In-situ estimate Constant, average 
conditions 

Glare Glare intensity, 4-point ordinal scale, summed two 
sides In-situ estimate Constant, average 

conditions 

1,2,4 & 5 

Main Effect 
PLS, 

Interaction 
PLS, and 

Decision trees 

SST Sea surface temperature (SST) from 
multiparameter water sensor In-situ measurement Interpolated spatial 

surface 

Salinity Conductivity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

Turbidity Turbidity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

River Distance Log-distance to coastal waterways/estuaries GIS, derived 

(Dyall et al. 2004) Same as training 

Reef Distance Log-distance to reefs 
(indicative reef outline as mapped by GBRMPA) 

GIS, derived 

(Beaman 2012) Same as training 

Seagrass 
Distance Log-distance to seagrass meadows 

GIS, derived 

(McKenzie et al. 2014) Same as training 

Foreshore 
Distance 

Log-distance to foreshore ecotypes (Euclidean 
distance to only mainland foreshore ecotypes) 

GIS, derived 
(Beaman 2012) Same as training 
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Sub-models Model type Covariate Covariate description Source at training Source at prediction 

Land Distance 
Log-distance to land (Euclidean distance to 

coastal boundary, including mainland and large 
islands) 

GIS, derived 
(Beaman 2012) Same as training 

Bathymetry Average depth GIS, bathymetric DEM 
(Whiteway 2009, Beaman 2010) Same as training 

Boats Total Counts of all boats in vicinity In-situ counts Interpolated spatial 
surface 

Boats Small Counts of all boats in vicinity, small size (< 5m) In-situ counts Interpolated spatial 
surface 

Boats Medium Counts of all boats, medium size (5-10m) In-situ counts Interpolated spatial 
surface 

Boats Large Counts of all boats, large size (> 10m) In-situ counts Interpolated spatial 
surface 

Boats Fishing Counts of all fishing boats and trawlers In-situ counts Interpolated spatial 
surface 

Boats 
Recreational 

Counts of all recreational motorboats and sailing 
boats In-situ counts Interpolated spatial 

surface 

Boats Industrial Counts of all barges, tugs, tankers, ferries, and 
cruise ships  In-situ counts Interpolated spatial 

surface 

Rock Dumping Log-distance to rock dumping during days of 
activity in 2020; otherwise, max distance GIS, derived Interpolated spatial 

surface 

Piling Log-distance to piling locations during days of 
activity in 2022; other max distance GIS, derived Interpolated spatial 

surface 

Maintenance 
Dredging 

Log-distance to maintenance dredging locations 
during 2019 and 2020; other max distance GIS, derived Interpolated spatial 

surface 

Capital dredging Log-distance to construction during days of 
activity in 2022 and 2023; other max distance GIS, derived Interpolated spatial 

surface 

Min distance to 
disturbance 

Minimum distance over rock dumping, piling, and 
dredging (capital and maintenance).. GIS, derived Interpolated spatial 

surface 

Pointwise 
disturbance 

Binary indicator of onboard records of 
disturbances being present In-situ measurement Set to 0 
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Sub-models Model type Covariate Covariate description Source at training Source at prediction 

6, 7 

Main-effect 
splines, and 
Interaction 

splines 

Time-of-day Metric time at observations In-situ measurement Constant, average 
conditions 

Day-of-Year Julian-day In-situ measurement Constant, average 
conditions 

8,9 

Main-effect 
bivariate 
splines, 

Interaction 
bivariate 
splines 

Space X & Y UTMs used in spatial spline GIS Same as training 
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 Main Effects and Interactions 

Some of the covariates are represented in more than one sub-model, especially as 

different sub-models represent “main effects” versus “interaction effects” with year. During 

the automatic model-selection and regularization, the model selects the best combination of 

main-effects and interaction effect. For example, the penalized least-squares sub-models 

can represent a univariate main-effect with no interactions; or they can have an interaction 

with “year”, such that the slope and intercepts vary per year. Those sub-models that include 

“year” as an interacting categorical variable have more penalization than the “main effects” 

learners. This means that the automatic mode-selection should only select the higher-order 

interactions if the extra complexity is warranted and there is some important difference 

between years, in terms of dolphin spatial distribution.  

 Disturbances 

 There were multiple distance-to-disturbance covariates that were introduced 

this year. In past IDMP reports, the presence of such disturbances was simply recorded in-

situ, but such information was difficult extrapolate to a broader spatial field.  

 Using GIS and UTM coordinates, we mapped these disturbances to specific 

points, and approximate times (based on data provided by the Port of Townsville) across 

the study area, including Cleveland and Halifax Bays. This allowed us to calculate the 

distance from each dolphin sighting (and null points’) to the disturbance on specific dates.  

 These disturbance covariates included: 

• distance to rock dumping, present in June-July of 2020. This activity 

was related to CU project and occurred immediately adjacent to the port 

lands.distance to piling activities present intermittently between 28/06/2022 to 
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9/07/2022. Piling occurred at a few distinct locations with known dates along the 

channel from the Port of Townsville to the south-east region of Magnetic Island. 

• distance to capital dredging (BHD), occurring intermittently in the 

winters of 2022 and 2023 on known dates, along the channel from the Port of 

Townsville to the south-east region of Magnetic Island. 

• Minimum distance to disturbance. This spatial covariate was the 

minimum of all the above covariates when they were available.  

• distance to maintenance dredging (TSHD) present during 24/05/2019 

to 09/06/2019 and from 1/06/2020 to 29/06/2020). These activities occurred along 

the channel from the Port of Townsville to the south-east region of Magnetic Island. 

 Distances to the disturbances were calculated for each dolphin observation 

and each null-point. The distances were “marine distances”, such that they accounted for 

islands and mainland obstructions. See Fig. 4 for an example of the shortest distance 

between a dolphin located north of Magnetic Island, and a disturbance.  

 During time-intervals in which a disturbance was not occurring, we set the 

covariate’s value to the maximum over the study area. In other words, when a disturbance 

wasn’t present, it was recorded as being maximally distant. This was necessary to fill null-

values with a proper metric. Years without a particular construction activity (2019 and 

2024) provide a reference point for comparison. Including non-disturbance years prevents 

bias in the dataset by ensuring that the model is not only capturing responses to 

disturbance, allowing us to assess whether any observed changes in dolphin distribution 

were temporary or persistent, whether changes are potentially due to CU construction 

activities or just part of the dolphins' natural behavior. 

 All the distances were logged and then re-scaled to zero-mean and unit-

variance. 
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Figure 4. Demonstration of the shortest-distance path between a disturbance point to the 

south-east of Magnetic Island, and a dolphin point to the north of Magnetic Island, whereby 

the straight-line is obstructed by the island. These shortest marine paths were used for the 

distance-to-disturbance covariates. 

 Model Parsimony, Hyperparameters and Regularization 

The automatic ensemble-building and shrinkage mechanism theoretically improves 

model predictive performance by shrinking the weights of unimportant sub-models so that 

they have a small overall effect. This is also known as l1-regularization (which is equivalent 

to the Lasso). Therefore, the final ensemble is more parsimonious than the full theoretical 

model which could include all sub-models. 

The degree of shrinkage/regularization was controlled by several hyperparameters. 

These are explained in the following list. The values for each of these hyperparameters was 

tuned via 10-fold cross-validation, such that the hyperparameters with the best predictive 
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performance, according to the 10-fold cross-validation log-likelihood, was selected as the 

final model used for inference. 

The pertinent hyperparameters were: 

• the number of boosting iterations m (aka the “early stopping” parameter). The 

more iterations meant more complex models, and fewer boosting iterations meant more 

shrinkage and fewer selected sub-models. 

• the learning-rate (aka “shrinkage” rate) which down-weights the contribution 

of any individual submodel. This was fixed to a single value per species (0.01-0.12), after 

manually experimenting with different values to get final models that had between 1000-

6000 boosting iterations. A lower shrinkage rate meant that the model required more 

boosting iterations and has a smoother surface; a higher shrinkage rate meant the model 

required fewer boosting iterations and produced a less-smooth surface. A smaller rate is 

generally preferable but comes at high computational cost (time and electricity). 

• Max-depth of decision-trees, which could take on values of [3, 4]. This 

hyperparameter was only relevant for the decision-tree sub-models (No. 3, 4 and 5). The 

maximum tree depth (maxdepth) controlled the degree of interaction among covariates 

and the number of partitions of the covariate space. A small maxdepth meant that only 

two-way interactions were allowed, and there were only three splits of the covariate 

space (per boosting iteration). A higher maxdepth allowed higher-order interactions and 

allowed many more splits of the covariate space. 

• Bucket weight i.e., the minimum weight of terminal leaves in the decision-trees, 

which could take on values in the range of [2,6]. Lower values allow fitting more granular 

variation, at the risk of overfitting. Higher values require patterns to have more support 

in terms of the number of points on either side of a split, at the risk of underfitting rare 

but important patterns. 
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• Minimum test-statistic threshold (i.e., mincriterion, in the mboost R-library) 

which could take on values [0.4, 0.5, 0.6, 0.7, 0.75, 0.8 0.85]. This hyperparameter was 

only relevant to the decision-tree sub-models (No 3, 4 and 5). It controlled the hurdle rate 

for testing whether a split in the covariate space was significant enough to continue 

growing a decision tree. Lower values allowed the trees to grow longer (more interactions 

and more splits); higher values prevented the tree from growing too long and prevented 

unimportant splits from entering the model. 

• Degrees-of-freedom of the main-effects spatial splines, which could take on 

values [12 - 38]. This hyperparameter was only relevant to the main-effect spatial spline 

(sub-model No.8). A higher degree-of-freedom allowed a more flexible spatial surface, 

while lower values resulted in less spatial complexity. 

• Degrees-of-freedom of the spatial splines with year-interactions, could take on 

values in the range [18, 40] In previous years, these values were fixed as a multiple of 

the main effects. In either case, the values were higher to absorb per-year marginal 

variation above-and-beyond the variation that is common to all years (which should be 

explained by the main-effect spatial base-learner). 

• Degrees-of-freedom of the main-effects of the spatial-autocorrelation radial 

basis function (for sub-model No.10) which could take on values [12 - 36]. Higher values 

allowed “wigglier” auto-correlation effects, and lower values enforced smoother auto-

correlation effects. 

• Degrees-of-freedom of the spatial-autocorrelation radial basis function with 

year- interactions (sub-model No.11). which could take on values [12 – 36]. In previous 

years, these values were fixed as a multiple of the main effects, but were allowed to vary 

somewhat independently in this study. 

• K-knots in spatial splines, i.e., the number of basis functions underlying a 

spline. This could take on values between 20 to 36. Higher values allow more granular 
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spatial processes, at the risk of overfitting noise, while lower values force fitting more 

large and systemic patterns, at the risk of underfitting local spatial variation. 

• Other parameters, like the degrees-of-freedom of the penalized least-squares 

models (sub-models No. 1 and 2) and the degrees-of-freedom of the temporal splines 

(sub-model No.5) had their values fixed to 1 and 4, respectively, for all models (i.e., the 

recommended default values of the mboost library). 

 Relative Variable Importance 

 After tuning the hyper-parameters, we trained a final model for each species. 

These final models were used for inference, including estimating the relative variable 

importance (“contribution to risk-minimisation”; Elith et al. 2008) as well as spatial prediction 

of dolphin locations and abundance, and used for conducting comparative likelihood-ratio 

tests. 

 Covariate Partial Plots 

 Whereas RVIs and likelihood ratio tests can help quantify the importance of a 

covariate upon a species’ distribution, they do not provide a sense of the functional-

relationship or direction of the relationship between a covariate and the response variable. 

With traditional linear models, one can look at the direction and magnitude of coefficients to 

inference such relationships, but these are unavailable for machine-learning methods. 

Furthermore, the high-dimensional interactions that are present in machine-learning models 

means that a single covariate can rarely be interpreted in isolation, but must be observed 

as party to multiple two- or three-way interactions with other covariates. 

 Therefore, we made marginal plots of the two-way interactions between the 

high-RVI covariates and the (predicted) response variable. From these non-linear 
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interactions, we looked for patterns in the relationship and magnitude of relationship 

between species’ predicted abundance and the underlying covariates. 

 A pair’s marginal plot was created by first fixing the values of all other 

covariates to their 2024 mean-values, and then varying the pair’s values uniformly 

throughout its empirical range (in 2024), to get a 2D surface. The 2D surface was truncated 

to minimum convex hull of a pair’s empirical values (effectively excluding combinations of 

values that do not exist in reality, like maximum depth and zero distance to land). 

 AUC statistics 

 Model performance was assessed by statistics including the area under the 

receiver-operator curve (cv-ROCAUC) and the area under the precision-recall curve (cv-

PRAUC) (Fielding and Bell 1997, Harrell Jr 2015). For the AUC statistics, values above 0.5 

to 1 are considered improvement over random classification. 

 Likelihood-Ratios: Inference about disturbances 

  In order to evaluate whether the disturbance covariates had an important 

contribution to the species’ distributions, we used generalised likelihood ratios (Royall 1997) 

to compare two models per species: the best model according to hyperparameter tuning vs. 

a reduced model which dropped all the disturbance covariates (e.g., distance to rock-

dumping, distance to dredging, etc).  

 When the likelihood ratio between the reduced model and the full model is very 

high (>>1), it is evidence that the disturbance covariates are not significant contributions to 

the SDM. When the likelihood ratio between the reduced model and the full model is very 

low (<<1), it is evidence that the disturbance covariates are significant. Furthermore, the 

degree of significance is monotonic with respect to a decrease in the likelihood ratio, 
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allowing us to compare between species and answer the question: “are disturbances more 

or less significant for snubfins or humpbacks?” 

 We used a 5-times 10-fold cross-validation to approximate the “expected 

likelihood” (as opposed to the within-sample likelihood), such that the likelihood calculations 

were evaluated by training the model 5-times on 10-fold subsets of the data, and then 

estimating the likelihood on the hold-out samples. The mean over the cross-validation runs 

(aka CV-likelihood) was our estimate for the expected likelihood. It should be noted that the 

AIC is famous for approximating the expected likelihood, i.e., minimising the AIC maximises 

the expected likelihood (Akaike 1974, Akaike 1998). Therefore, by comparing two models 

by their CV-likelihoods, we are essentially conducting the same type of model comparison 

as minimising the AIC (albeit, with a different approximation of the expected likelihood). 

 We also computed CV p-values to contextualise our confidence in the 

conclusions of the likelihood ratio. The CV p-values were the proportion of the 5-times CV-

runs in which the reduced model was better than the best-model. For example, if the reduced 

model defeats the best model 0 times, then our p-value would be 0.0. If the reduced model 

defeats the best model in all CV-runs, then the p-value would be 1.0. The approximate p-

value can take on multiples of 0.2 (i.e., 0, 0.2, …., 1.0). Low p-values mean that the full-

model can be rejected with more confidence that the conclusion is robust to multiple 

realisations of the data. 

 Spatial predictions 

Using the best model (according to cross-validation) we produced three types of 

spatial partial plots. The first partial plot was the probability of occurrence 

(presence/absence) of snubfin and humpback dolphins. This is the expected counts of 

animals in groups if the group is present. This is not to be confused with abundance, 

because a very sparsely distributed population which aggregates into large herds/pods 
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could have the same abundance as an evenly distributed population with small group sizes. 

The third spatial partial plot was the product of the probability of occurrence and group sizes, 

which yields a predicted density of snubfin and humpback dolphins in Cleveland Bay and 

Halifax Bay. 

 Spatial Interpolation of In-Situ Covariates 

As was performed in the previous report, as a pre-processing step prior to the species 

distribution model spatial predictions, we needed to interpolate values of some of the 

covariates (i.e., generate spatial maps). This was necessary for those covariates which were 

estimated or measured in-situ during the boat surveys (such as SST, turbidity, salinity, boats 

total, boats small, boats medium, boats large, boats fishing, boats recreational, and boats 

industrial). Being measure/estimated in a point-wise fashion, they have no natural map that 

we can use for the species distribution model spatial prediction.  

As we did in the previous report, the spatial interpolations were conducted by pooling 

two spatial modelling techniques: 

• Generalised additive models GAMs: model-averaging of spatial GAMs; and 

• component-wise boosting. 

Each in-situ covariate was modelled according to both modelling techniques, and 

their spatial predictions were averaged. Both techniques allowed decomposition of variation 

into spatial components and temporal components. Only the spatial components were used 

for generating the spatial interpolations (in other words, all temporal effects were set to their 

mean-value across the entire spatial survey area). 

Regarding missing data (due to equipment malfunction), we employed a two-round 

approach. During round #1, all rows of data that had missing data were deleted, and an 

initial working-model was made for SST, turbidity, salinity and all the boat-covariates, for a 
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total of 10 models (one per covariate that required interpolation). The missing values of 

these covariates were then imputed using the Round #1 models, and a second round of 

models were run, conditional on the imputed values from Round 1 (thereby allowing us to 

use all rows of data). The Round 2 models were then used to interpolate the values of the 

covariates across the study area for all years.  

 Spatial Interpolation by Generalised additive models (GAMs) 

The spatial interpolation by GAMs consisted of running multiple models and model-

averaging their predictions by AIC weights. We used the R-package mgcv (Wood 2003). 

The different models consisted of different combinations of the following terms/sub-models: 

1. year-as-factor (i.e., different intercepts per year) 

2. three of the following main-effects using thin-plate shrinkage splines: spline 

(bathymetry), spline (distance to rivers), spline (distance to reefs), spline (distance to 

nearshore), spline (distance to land), spline (SST), spline (salinity), and spline (turbidity). 

Only three combinations of covariates were tested, in which covariate-sets were selected 

based on minimizing in-group correlation among the covariates. 

3. one of the following soap-film spatial smooths: spline (latitude, longitude) as a 

main-effect spatial; and spline (latitude, longitude, interaction=year) as a per-year 

interaction. 

4. one of the following bivariate splines: spline (time-of-day, time-of-year) as a 

main-effect temporal spline; and spline (time-of-day, time-of-year, by=year) as a per-year 

interaction spline. 

It should be noted that the GAM method benefitted from the soap-film spatial smooth 

that respects maritime boundaries and islands (unlike generic kriging methods or generic 

bivariate splines).  
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It should be noted that there were additional, more-complex models that were 

possible, such models with bivariate interactions among covariates, but these often-had 

difficulty converging and failed. Nonetheless, given the small amount of data, it is reasonable 

to bias the models to only those that have a small amount of complexity (i.e., a few number 

of covariates and degrees-of-freedom), and use model-averaging to weight models 

according to their predictive performance. 

 The models for SST, salinity, and turbidity used a Gaussian distribution 

(sometimes the values were log-transformed and mean-centred in order to get 

approximately normally distributed values), whereas the boat covariates (boats total, boats 

small, boats medium, boats large, boats fishing, boats recreational, boats industrial) were 

modelled according to a Poisson distribution (note: in past years we tried to interpolation-

GAMS with a zero-inflated Poisson distribution, but these proved computationally infeasible 

with more data). 

 The final model was combined by discarding models with less than 5% AIC 

model-weights and weighting the remaining predictions according to their AIC model-

weights. 

 Spatial Interpolation by Boosting 

The second interpolation method was boosting. The technique was identical to that 

used for species distribution modelling for snubfin and humpbacks but excluded all 

covariates relating to weather conditions (e.g., BSS, glare), thereby focusing on large-scale 

spatial processes for interpolation, and not intra-day weather variation.  

The interpolated covariates SST, salinity, and turbidity were run using a Gaussian 

distribution, whereas the boat covariates (boats total, boats small, boats medium, boats 
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large, boats fishing, boats recreational, boats industrial) were modelled according to a zero-

inflated Poisson distribution. 

 Spatial Interpolation of Distance-to-Disturbances 

 Although the disturbances (piling, rock dumping, capital dredging) were 

literally spatial fields, we transformed them into spatial fields by calculating distances each 

marked point of a disturbance, from every grid-cell in the study area. This was necessary in 

order to incorporate such covariates that were used during model training into the SDM. 

 The spatial field of each disturbance was calculated by a two-step process. 

First, we generated ~500 points systematically across the study area’s marine space. At 

each point, we calculated the (log) distance to a disturbance. If a disturbance was a linear 

feature (like the maintenance dredging) or was multiple points (like piling), we took the 

minimum distance. Secondly, we used these points as inputs to a high-capacity spatial spline 

model, whose response variable was the distance-to-disturbance. Finally, using the trained 

model, we interpolated to all the remaining grids in the study area. An example of the 2022 

distance-to-capital dredging is shown in Fig. 5. 
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Figure 5. Example of spatial field representation of log-distance to capital dredging in 2022. 

The X and Y axes represent UTM coordinates (Universal Transverse Mercator projection). 

The colours represent the distance in meters from the dredging activities. Green areas: 

Farthest from the dredging activity. Yellow areas: Intermediate distances. Pink areas: 

Closest to the dredging activity. The scale bar on the right shows values ranging from low 

(white) to high (green). These values correspond to the distance in meters from the dredging 

location.  



 

44 
 

2.4 Data analysis: Patterns of attendance to the port area 

 Land-based surveys 

We have analysed the land-based survey data using a combination of descriptive 

statistics, and statistical ensemble-modelling.  

This report provides the following descriptive statistics: total dolphin counts by 

species, and their behavioural compositions (resting, foraging, socialising, and travelling). 

These dependent variables are further summarised by covariates, including hours of day, 

presence of boats, presence of capital dredging, presence of maintenance dredging, 

presence of rock dumping, presence of piling, as well as an overall comparison of the counts 

of dolphins in 2024 vs 2019, 2024 vs 2020, and 2024 vs 2021, 2024 vs 2022, and 2024 vs 

2023. The later represent our primary inferential tool for testing whether there have been 

any changes on dolphin occurrence around the port area due to boats, maintenance 

dredging and CU construction activities (i.e., rock dumping, capital dredging, and piling).  

For statistical tests, we used a method called the Bayesian p-value (Gelman et al. 

1996). We used the occurrence records of 2019 as a type of “null model” (characterising 

pre-construction conditions) and calculated Bayesian p-values which compared dolphin 

presence in 2024 to those of previous years. Low Bayesian p-values suggest that the 

presence of dolphins was lower than what would be expected according to the 2019 null-

model, while high Bayesian p-values suggest that the 2024 data is consistent with the 2019 

null-model. 

Likewise, we used the presence/absence of dolphins during no-capital dredging no-

maintenance dredging, no-rock dumping, and no-piling periods across all years as the “null 

model” (characterising normal conditions of the dolphins) and calculated the probability of 

seeing dolphin counts as low as that observed during capital dredging, maintenance 

dredging, rock dumping, and piling activities. Low Bayesian p-values provide evidence that 
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the counts of dolphins were lower that what would be expected according to the null models 

of no capital dredging, no maintenance dredging, no-rock dumping and no-piling periods 

(i.e., a low-probability events according to the null-models), while high Bayesian p-values 

suggest that the counts during disturbance activities were no different than under normal 

background conditions. 

 

 

 

The above formalism is specific to the calculation of Bayesian p-values for binary-

occurrences. For counts/abundances, the same framework applies, but instead uses a 

Poisson-Gamma distribution as the null model. 

 Land-Station Ensemble Modelling 

 We used the R-package mgcv to model the presence/absence of snubfin and 

humpback dolphins per scan, as an ensemble of GAMs. In particular, we used logit-binomial 

response variable (i.e., presence/absence) and included various environmental predictors 
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and anthropogenic indicators modelled as linear effects, including wind, BSS, swell, visibility, 

glare, boats small, boats medium, boats large, boats fishing, boats recreational, boats total, 

boats industrial, capital dredging, maintenance dredging, rock dumping, and piling. 

Unexplained temporal variation was modelled as three covariates: year-as-a-factor, time-of-

day (as a 6-degree spline), time-of-day with an interaction with year (as an 18-degree 

bivariate spline), and julian-day-of-year (as a 6-degree spline) and julian-day-of-year (as an 

18-degree bivariate spline). 

 Due to the large number of related/overlapping covariates, we performed multi-model 

inference, capping the number of linear covariates at 3. We used the AIC to approximate 

posterior-model probabilities (a.k.a, AIC-weights). The weights were used for two purposes: 

i) to calculate model-averaged regression-coefficients/marginal-effects and frequentist p-

values for different covariates); and ii) for calculating the posterior inclusion probabilities 

(a.k.a, sum-of-AIC weights). The former is for estimating effects-sizes and performing 

significance tests, while the latter have a Bayesian interpretation: what is the probability that 

covariate X is important for dolphins' presence/absence. 

 We also estimated the model-averaged time-series of dolphin probability of 

occupancy (on the logit-scale) across years 2019, 2020, 2021, 2022, 2023 and 2024. 

3. Results 

3.1 Population demographics  

 Vessel based survey effort 

We surveyed a total of 3053.8 km on transect effort over 18 days between June 1 

and July 15, 2024, covering 1596.4 km in Cleveland Bay and 1457.5 km in Halifax Bay (Fig. 

6, Table 2). Six survey repeats were completed in both bays from 2019 to 2021, seven in 

2022 and 2023 and nine in 2024. Like last year, survey effort was higher in inshore areas 
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(2369.7 km) than in offshore areas (684.1 km) due to the poor weather conditions 

encountered often in offshore areas (Beaufort sea state > 4). 
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e) 2023 ̀  `     f) 2024 

Figure 6. Map of survey area showing survey transects (solid black lines) and realized 

survey effort (light blue to dark red) in Cleveland and Halifax Bay in June-July a) 2019, b) 

2020, c) 2021, d) 2022, e) 2023 and f) 2024. Survey intensity scale represents the relative 

number of times a transect was visited, as an approximate visual indicator of observational 

intensity (for data-summary purposes only). 



 

49 
 

Table 2: Summary of boat-based survey effort (total length of transects completed on effort) 

and sea state conditions encountered in Cleveland Bay (CB) and Halifax Bay (HB) during 

each complete survey (secondary period) in the 2024 primary sample (June-July).  

Study area Sec. period Dates 

Inshore Offshore Total Beaufort Sea 
State 

Transect 
length (km) 

Transect 
length 
(km) 

Transect 
length 
(km) 

min max mode 

Cleveland 
Bay 

1 01/06 144.8 50.7 195.5 0 3 1 

2 05/06 133.3 1.4 134.7 0 3 3 

3 11/06 144.8 35.7 180.5 0 3 1 

4 15/06 144.8 54.1 198.9 0 3 1 

5 17/06 139.1 55.5 194.6 0 3 1 

6 19/06 144.8 36.8 181.6 0 3 1 

7 01/07 144.8 43.7 188.5 0 3 2 

8 12/07 144.8 31.1 175.9 0 3 2 

9 14/07 144.8 1.4 146.2 1 3 1 

Total - 1286.0 310.4 1596.4 - - - 

Halifax 
Bay 

1 04/06 114.1 27.4 141.5 1 3 2 

2 10/06 121.2 55.4 176.6 0 3 1 

3 12/06 121.2 58.9 180.1 0 3 1 

4 16/06 121.2 46.5 167.7 0 3 1 

5 18/06 121.2 22.7 143.9 1 3 2 

6 20/06 121.2 62.0 183.2 0 3 1 

7 02/07 121.2 47.0 168.2 1 3 2 

8 13/07 121.2 17.5 138.7 0 3 2 

9 15/07 121.2 36.4 157.6 1 3 2 

Total - 1083.7 373.8 1457.5 - - - 

 Grand total - 2369.7 684.1 3053.8 - - - 
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 Dolphin sightings, encounter rates and group sizes 

The vessel surveys in 2024 resulted in a total of 112 dolphin group sightings 

(including both on and off effort sightings) (Fig. 7f, Table 3). This consisted of 35 groups of 

snubfin dolphins (Fig. 7f), 61 groups of humpback dolphins (Fig. 7l) and 16 groups of 

bottlenose dolphins (Fig 7r). Other marine mammals sighted during 2024 surveys included 

dugongs and humpback whales (Fig 7x). In 2024, we sighted a total of 9 groups of snubfin 

dolphins in Cleveland Bay (0.0056 dolphin group/km), while 26 were sighted in in Halifax 

Bay (0.0185 dolphin group/km). A total of 28 groups of humpback dolphins were sighted in 

Cleveland Bay (0.0175 dolphin group/km) and 33 in Halifax Bay (0.0226 dolphin group/km) 

(Table 3). Bottlenose dolphin groups were sighted 6 times in Cleveland Bay (0.0038 dolphin 

group/km) and 10 times (0.0069 dolphin group/km) in Halifax Bay in 2024 (Table 3). 

Encounter rates (number of dolphin groups/km) of snubfin dolphin groups in 

Cleveland Bay showed interannual variability, with the highest encounter rates recorded in 

2019 (0.0182 dolphin group/km) and the lowest in 2022 (0.0019 dolphin group/km) and 2023 

(0.0016 dolphin group/km), followed by an increase in 2024 (0.0050 dolphin group/km). 

Encounter rates in Halifax Bay also fluctuated over time, with similar values in 2019 (0.0193 

dolphin group/km) and 2020 (0.0191dolphin group/km), a decrease in 2021 (0.0140 dolphin 

group/km), increases in 2022 (0.0214 dolphin group/km) and 2023 (0.0270 dolphin 

group/km), and a subsequent drop in 2024 (0.0178 dolphin group/km) (Table 3). 

In Cleveland Bay, humpback dolphin encounter rates increased between 2019 

(0.0139 dolphin group/km) and 2020 (0.0256 dolphin group/km), but then declined in 2021 

(0.0219 dolphin group/km) and 2022 (0.0185 dolphin group/km), increased in 2023 (0.0211 

dolphin group/km), followed by a decrease in 2024 (0.0175 dolphin group/km). In Halifax 

Bay, encounter rates were highest in 2019 (0.0385 dolphin group/km), decreased in 2020 

(0.0347 dolphin group/km) and 2021 (0.0162 dolphin group/km), rose again in 2022 (0.0259 
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dolphin group/km), then decreased in 2023 (0.0223 dolphin group/km) and remained similar 

in 2024 (0.0226 dolphin group/km) (Table 3).  

In Cleveland Bay, bottlenose dolphins were rarely recorded: encounter rates fell from 

0.0032 dolphin group/km in 2019 to zero in 2020, increased in 2021 (0.0030 dolphin 

group/km) and again in 2022 (0.0039 dolphin group/km), then dropped in 2023 (0.0016 

dolphin group/km), and increased again in 2024 (0.0038 dolphin group/km). In Halifax Bay, 

encounter rates decreased from 2019 (0.0024 dolphin group/km) to 2020 (0.0012 dolphin 

group/km), increased in 2021 (0.0100 dolphin group/km), rose slightly in 2022 (0.0101 

dolphin group/km), peaked in 2023 (0.0177 dolphin group/km), and decreased in 2024 

(0.0069 dolphin group/km ) (Table 3). 

Groups of humpback dolphins have been sighted in similar numbers in Cleveland 

Bay (0.01 to 0.026 dolphin group/km) over the years; but have decreased in Halifax Bay 

from 0.039 dolphin group/km in 2019 to 0.023 dolphin group/km in 2024 (Table 3).  

Groups of snubfin dolphins in 2024 varied in size from 1 to 17 individuals, with a mean 

(± SD) group size of 5.9 ± 4.1 (based on best estimates of group size) (Table 4). The group 

size of humpback dolphins ranged from 1 to 35 individuals, with a mean (± SD) group size 

of 5.4 ± 4.5. Bottlenose dolphin groups ranged from 2 to 14 individuals (mean ± SD = 5.7. ± 

3.1) (Table 4).  
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Figure 7. Location and group sizes of Australian snubfin dolphins (a-f), humpback dolphins (g-l), 

bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020, 2021, 2022, 

2023 and 2024 during boat surveys in Cleveland and Halifax Bays.  
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-f), humpback 

dolphins (g-l), bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020, 

2021, 2022, 2023 and 2024 during boat surveys in Cleveland and Halifax Bays.  
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-f), humpback 

dolphins (g-l), bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020, 

2021, 2022, 2023 and 2024 during boat surveys in Cleveland and Halifax Bays. 
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-f), humpback 

dolphins (g-l), bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020, 

2021, 2022, 2023 and 2024 during boat surveys in Cleveland and Halifax Bays. 
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Table 3. Number of groups (n) and encounter rate (total number of dolphin groups sighted 

per km of transect surveyed) of snubfin, humpback and bottlenose dolphins in Cleveland 

and Halifax Bays during 2019, 2020, 2021, 2022, 2023, and 2024 boat surveys.  

Year Species 

Cleveland Bay Halifax Bay Total 

n 
Number of 

dolphin 
groups/km 

n 
Number of 

dolphin 
groups/km 

n 
Number of 

dolphin 
groups/km 

2019 
Snubfin 17 0.0182 16 0.0193 33 0.0187 

Humpback 13 0.0139 32 0.0385 45 0.0255 
Bottlenose 3 0.0032 2 0.0024 5 0.0028 

2020 
Snubfin 14 0.0138 16 0.0191 30 0.0162 

Humpback 26 0.0256 29 0.0347 55 0.0297 
Bottlenose 0 0.0000 1 0.0012 1 0.0005 

2021 
Snubfin 10 0.0100 14 0.0133 24 0.0117 

Humpback 22 0.0219 17 0.0162 39 0.0190 
Bottlenose 3 0.0030 10 0.0095 13 0.0063 

2022 
Snubfin 2 0.0019 19 0.0214 21 0.0110 

Humpback 19 0.0185 23 0.0259 42 0.0219 
Bottlenose 4 0.0039 9 0.0101 13 0.0068 

2023 
Snubfin 2 0.0016 29 0.0270 31 0.0134 

Humpback 26 0.0211 24 0.0223 50 0.0217 
Bottlenose 2 0.0016 19 0.0177 21 0.0091 

2024 
Snubfin 9 0.0056 26 0.0178 35 0.0115 

Humpback 28 0.0175 33 0.0226 61 0.0200 
Bottlenose 6 0.0038 10 0.0069 16 0.0052 
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Table 4. Group size and age composition of snubfin, humpback and bottlenose dolphins 

encountered during boat-based surveys in the Townsville region in 2019, 2020, 2021, 

2022, 2023 and 2024. 

 

 Photo-identification and capture-recapture data 

One hundred and forty-four individual snubfin and 240 individual humpback dolphins 

have been identified since sampling began in 2019. Table 5 shows the numbers of snubfin 

Year Species 

Group size Group age composition 

Min Max Mean (SD) 

Mean proportion of 
adults, juveniles, 

calves (%) 
No. groups 

with 
juvenile or 

calf present A J C 

2019 

Snubfin 1 16 4.7 (3.6) 77 11 10 15 (45%) 

Humpback 1 30 5.18 (4.9) 77 11 10 28 (62%) 

Bottlenose 1 8 4.4 (2.6) 67 10 10 4 (80%) 

2020 

Snubfin 1 20 4.7 (3.9) 83 6 10 15 (50%) 

Humpback 1 20 4.7 (4.1) 75 13 12 32 (58%) 

Bottlenose 3 3 3 (NA) NA NA NA 1 (100%) 

2021 

Snubfin 1 12 4.1 (2.8) 81 10 8 13 (54%) 

Humpback 1 20 4 (3.6) 84 9 6 17 (43%) 

Bottlenose 1 10 3.5 (2.3) 63 23 14 10 (77%) 

2022 

Snubfin 1 26 4.6 (5.1) 83 6 11 6 (30%) 

Humpback 1 20 3.7 (2.8) 77 12 11 22 (52%) 

Bottlenose 1 16 4.9 (2.9) 76 20 4 9 (69%) 

2023 

Snubfin 1 24 5.5 (4.4) 87 2 11 14 (45%) 

Humpback 1 25 3.9 (3) 70 15 15 35 (70%) 

Bottlenose 1 15 5.3 (2.9) 75 13 12 15 (71%) 

2024 

Snubfin 1 17 5.9 (4.1) 79 9 12 22 (63%) 

Humpback 1 35 5.4 (4.5) 71 16 13 42 (69%) 

Bottlenose 2 14 5.7 (3.1) 72 21 7 12 (75%) 
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and humpback dolphins captured and first identified in each bay in each year. The total 

numbers of each species captured and first captured in each year irrespective of the sites 

in which they were captured are also shown. These totals are not always equal to the sums 

of the numbers identified in each of the two bays. This is because some dolphins were 

captured in both bays in the same years and are not counted twice in the totals. It is pertinent 

to note that because a dolphin may have been first identified in a certain year should not be 

taken to mean that they were not present in previous years only that, if they were present in 

previous years, they were not captured. Captured or not, their numbers are represented in 

the model estimates. In 2024, 25 individual snubfin and 49 humpback dolphins were photo-

identified in Cleveland Bay, and 52 snubfin and 84 humpback dolphins were photo-identified 

in Halifax Bay (Table 5). 

Table 5. Numbers of individual snubfin and humpback dolphins captured and first identified 

in each bay in each year from 2019 to 2024. The total numbers captured and first identified 

in each year irrespective of the sites on which they were captured are also shown. 

Species Bay Number captured/First captures 
2019 2020 2021 2022 2023 2024 

Snubfin 
Cleveland 28/28 26/8 15/5 1/0 10/4 25/9 

Halifax 38/38 26/10 16/2 42/27 53/22 52/20 
Total 57/57 49/14 29/4 43/26 55/17 65/26 

Humpback 
Cleveland 16/16 25/16 25/9 29/13 51/32 49/22 

Halifax 42/42 39/25 30/9 32/20 40/24 84/58 
Total 54/54 56/30 51/12 58/29 82/46 119/69 

 

Even though many of the dolphins first captured each year may have been present 

but not captured in previous years, the relatively large numbers of snubfin dolphins first 

captured in Halifax Bay and humpback dolphins first captured on both sites from 2022 

onwards suggest that there may have been immigration to the area in the last three years. 
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The MSCRD analyses all data on each species captured in both bays in all six years. 

Previous reports have demonstrated that no biases were introduced by the inclusion of off-

effort data. Thus, we use both on-effort and off-effort data for the MSCRD analyses of each 

species. Good data for both bays in all six years are required for the model to return reliable 

estimates for each species. This was not the case for snubfin dolphins in 2022 or 2023, with 

only one having been captured in Cleveland Bay in 2022 and ten having been captured all 

on one day in 2023. How these deficiencies were managed in the analysis is subsequently 

discussed in detail. Considering the combined on- and off-effort data (Table 6) in the original 

six secondary samples (PS_SS) data for both species, there were many zero or very low 

numbers of captures in both bays in all years. Models using these data would return many 

poorly or improperly estimated parameters, i.e., with large or zero standard errors.  

An even number of secondary samples was planned in anticipation of small numbers 

of captures being made to allow a strategy of collapsing each consecutive pair of secondary 

samples into one (1&2=1, 3&4=2, 5&6=3) to increase the per secondary sample numbers 

of captures (Table 6). However extra time was allocated for sampling to allow for days lost 

due to poor weather and these days were used to complete further secondary samples as 

the opportunity arose. This resulted in seven secondary samples being completed on both 

sites in 2022 and 2023 and nine in 2024. The data were collapsed to three combined 

secondary samples (PS_CS) for 2019 to 2021 (1&2=1, 3&4=2, 5&6=3), three combined 

samples in 2022 and 2023 (5,6&7=3) and four combined samples in 2024 (8&9=4) for 

MSCRD analyses of both dolphin species. 
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Table 6. Number of individual snubfin and humpback dolphins identified and number of captures by year, species, bay, on and off effort, 

and secondary sample. PS_SS refers to the secondary samples (each composed of two complete transects on a site); PS_CS refers to 

secondary samples as collapsed from PS_SS (1 & 2 =1; 3 & 4 = 2; 5, 6 & 7 = 3; 8 & 9 =4). 

Year Species Bay No. of  
Individuals identified Effort 

PS_SS PS_CS 

s1 s2 s3 s4 s5 s6 s7 s8 s9 S1 S2 S3 S4 

2019 

Snubfin 
Cleveland 

27 On only 8 3 9 0 12 6 NA NA NA 11 9 13 NA 
28 On + off 8 3 9 11 12 6 NA NA NA 11 15 13 NA 

Halifax 
36 On only 13 1 11 0 12 10 NA NA NA 14 11 20 NA 
38 On + off 13 1 11 2 12 10 NA NA NA 14 13 20 NA 

Humpback 
Cleveland 

12 On only 3 3 9 3 0 0 NA NA NA 6 10 0 NA 
16 On + off 3 3 10 5 5 0 NA NA NA 6 12 5 NA 

Halifax 
42 On only 4 19 1 10 9 17 NA NA NA 20 11 25 NA 
42 On + off 4 19 1 10 9 17 NA NA NA 20 11 25 NA 

2020 

Snubfin 
Cleveland 

26 On only 6 0 2 10 4 7 NA NA NA 6 11 11 NA 
26 On + off 6 0 2 10 4 7 NA NA NA 6 11 11 NA 

Halifax 
26 On only 0 6 7 8 10 8 NA NA NA 6 15 18 NA 
26 On + off 0 6 7 8 10 8 NA NA NA 6 15 18 NA 

Humpback 
Cleveland 

25 On only  1 2 8 6 16 8 NA NA NA 3 11 20 NA 
25 On + off  1 2 8 6 16 8 NA NA NA 3 11 20 NA 

Halifax 
39 On only  3 16 5 10 13 5 NA NA NA 19 14 18 NA 
39 On + off  3 16 5 10 13 5 NA NA NA 19 14 18 NA 

2021 
Snubfin 

Cleveland 
15 On only  4 7 1 1 3 0 NA NA NA 11 2 3 NA 
15 On + off  4 7 1 1 3 0 NA NA NA 11 2 3 NA 

Halifax 
16 On only  0 6 4 1 1 6 NA NA NA 6 5 7 NA 
16 On + off  0 6 4 1 1 6 NA NA NA 6 5 7 NA 

Humpback Cleveland 23 On only  11 3 0 9 10 2 NA NA NA 13 9 11 NA 
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Year Species Bay No. of  
Individuals identified Effort 

PS_SS PS_CS 

s1 s2 s3 s4 s5 s6 s7 s8 s9 S1 S2 S3 S4 
25 On + off  11 3 0 9 10 7 NA NA NA 13 9 14 NA 

Halifax 
29 On only  17 1 5 2 0 11 NA NA NA 18 7 11 NA 
30 On + off  17 1 5 2 0 12 NA NA NA 18 7 12 NA 

2022 

Snubfin 
Cleveland 

1 On only  0 0 0 0 0 0 1 NA NA 0 0 1 NA 
1 On + off  0 0 0 0 1 0 1 NA NA 0 0 1 NA 

Halifax 
40 On only  0 4 12 1 13 13 4 NA NA 4 13 25 NA 
42 On + off  0 4 12 4 13 13 4 NA NA 4 16 25 NA 

Humpback 
Cleveland 

21 On only  0 0 16 6 3 2 3 NA NA 0 19 6 NA 
29 On + off  6 1 16 6 3 8 3 NA NA 7 19 11 NA 

Halifax 
31 On only  0 2 0 9 4 14 8 NA NA 2 9 22 NA 
32 On + off  3 2 0 9 4 14 8 NA NA 4 9 22 NA 

2023 

Snubfin 
Cleveland 

10 On only  0 0 0 0 0 10 0 NA NA 0 0 10 NA 
10 On + off  0 0 0 0 0 10 0 NA NA 0 0 10 NA 

Halifax 
40 On only  1 0 6 4 6 5 22 NA NA 1 10 33 NA 
53 On + off  1 1 7 18 6 19 22 NA NA 2 20 41 NA 

Humpback 
Cleveland 

47 On only  10 2 4 0 23 11 3 NA NA 10 4 36 NA 
51 On + off  11 2 6 9 23 16 3 NA NA 11 9 38 NA 

Halifax 
30 On only  0 3 6 11 9 0 10 NA NA 3 15 17 NA 
40 On + off  0 4 8 11 9 7 11 NA NA 4 17 24 NA 

2024 
Snubfin 

Cleveland 
14 On only  0 0 0 2 0 0 0 12 8 0 2 0 13 
25 On + off  0 0 1 2 2 13 0 12 8 0 2 14 13 

Halifax 
41 On only  1 12 13 14 5 16 0 6 6 12 25 17 10 
52 On + off  10 15 13 24 5 16 4 6 12 18 33 21 16 

Humpback Cleveland 
40 On only  22 3 1 8 8 1 12 3 1 25 9 16 4 
49 On + off  22 3 9 8 9 14 12 3 19 25 12 22 19 
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Year Species Bay No. of  
Individuals identified Effort 

PS_SS PS_CS 

s1 s2 s3 s4 s5 s6 s7 s8 s9 S1 S2 S3 S4 

Halifax 
72 On only  0 15 4 10 19 0 15 24 9 15 14 34 32 
84 On + off  2 15 4 11 24 4 15 30 11 17 15 41 39 
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 Goodness of fit 

The goodness of fit test statistics from U-Care were, for the snubfin data 𝜒𝜒2 = 8.562,

𝑑𝑑𝑑𝑑 = 18.00, 𝑝𝑝 = 0.969 and, for the humpback data 𝜒𝜒2 = 19.297,𝑑𝑑𝑑𝑑 = 22, 𝑝𝑝 =

0.627 indicating no evidence of lack of fit between the models and the data for either species. 

Consequently, no adjustment was made to 𝑐̂𝑐 (i.e., 𝑐̂𝑐 = 1) and AICc was used for model 

comparisons. 

 Models 

Capture probabilities were highly variable over years and secondary samples 

(PS_CS) for both species and displayed no evident pattern for either. Consequently, capture 

probability was fitted as fully time varying by year and secondary sample (PS_CS) in all 

models except as described below. The apparent survival, movement and temporary 

emigration parameters refer to the intervals between years (2019 to 2020, 2020 to 2021, …, 

2023 to 2024). In principle, separate estimates may be obtained for each interval. These 

parameters were typically estimated with wide confidence intervals and were often fitted as 

constant over intervals (yielding averages for the three intervals). This was a practical way 

of obtaining useful and reasonably reliable estimates of meaningful parameters given limited 

numbers of captures. 

Exceptions to fitting the apparent survival, movement, and temporary emigration 

parameters as constant over intervals were made in response to the near absence of snubfin 

dolphins in Cleveland Bay in 2022 with only one having been captured, and limited captures 

(10) in 2023 which all occurred on only one day. The approach to fitting these models is 

described subsequently. 

It is likely that very few snubfin dolphins visited the Bay during the sampling period in 

2022, with very few sightings from either the vessel surveys (2 sightings) or land-based 
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surveys (one sighting). The absence of snubfin dolphins in Cleveland Bay in 2022, following 

estimates of approximately 30-40 in previous years, may have been due to a decrease in 

their apparent survival (due to deaths or permanent emigration from the Bay), an increase 

in their rate of movement from Cleveland to Halifax Bay, or an increase in their temporary 

emigration from the Townsville area (absent from both Cleveland and Halifax Bays). 

While more snubfin dolphins were captured in Cleveland Bay in 2023 than 2022, that 

they were all captured on only one day is problematic for the analysis. Since capture-

recapture models rely on recaptures across multiple sampling events to estimate population 

size, the anomalous capture pattern in 2023 affects not only the 2023 estimates but also the 

2022 estimates. If capture probability in 2023 was artificially inflated on one day, it could 

lead to misleading estimates of survival and movement, making 2022’s population size 

estimates unreliable as well. Capture-recapture models assume that, within a given season, 

the population size remains relatively stable. However, if all captures in 2023 occurred on a 

single day, it suggests that either: 1) The dolphins were not consistently present throughout 

the season (i.e., temporary emigration), or 2) Sampling conditions or effort were significantly 

different on that particular day compared to the rest of the season. Either scenario 

contradicts the assumption of a constant number of dolphins in Cleveland Bay. If the high 

number of captures in 2023 were due to a temporary aggregation event rather than a true 

reflection of the population size, the model could overestimate the population for that year. 

Conversely, if the model assumes that dolphins were equally available for capture 

throughout the season, but in reality, they were not, then it could underestimate capture 

probability and inflate the population estimate.  

Although the global goodness of fit test found no evidence of lack of fit of the data to 

the model, the pattern of captures in 2023 would be very unlikely to have occurred if the 

assumptions of the model were met, notably that the number of snubfin dolphins in 
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Cleveland Bay was constant throughout the season. Consequently, not only are the 

estimates for snubfin dolphins in 2022 suspect but so also are the estimates for 2023. 

Although changes in the estimates of the apparent survival, movement, and 

temporary emigration parameters in the MSCRD model might theoretically describe the 

events underlying the changes in capture rates in 2022 and 2023 from those in 2019, 2020 

and 2021, the capacity of the model to detect such changes as significant effects is limited 

by the volume of data. There is very little information in the data for Cleveland Bay in 2022 

with only one capture, and the information in the ten captures in 2023 is unreliable as 

described above. 

Captures were made on only one day in both 2022 and 2023, and no captures were 

made in the first combined sample in 2024. The capture probability for the years 2022 and 

2023 were modelled as having been constant over combined samples and constant over 

the first two combined samples in 2024 to allow the models to run and estimates to be 

produced. While estimates from models with the capture probabilities in Cleveland Bay 

modelled as constant over secondary samples are reported here, the estimated numbers of 

snubfin dolphins in Cleveland Bay in 2022 and 2023 are considered unreliable. As a check 

on the bias involved, the best fitting model was refitted with the mean (= ~ 0.3) of the 

estimated capture probabilities from 2019 to 2021 for snubfin dolphins in Cleveland Bay in 

2022 and 2023. This model did not estimate the number for 2022 and returned one as the 

number captured and estimated 13 snubfin dolphins in Cleveland Bay in 2023. 

To obtain evidence of increased movement from Cleveland to Halifax Bay between 

2021 and 2022, the rate of movement was fitted as equal between 2019 to 2020 and 2020 

to 2021, different between 2021 and 2022 and zero between 2022 and 2023 (there was only 

one to move and was not observed to do so). Movement between 2023 and 2024 was fitted 

separately, as equal to the movement between 2019 and 2021 in another model and equal 
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to the movement between 2021 and 2022 in a third. In respect of movements in the other 

direction, from Halifax Bay to Cleveland Bay, the rates were fitted as equal between 2019 

to 2020 and 2020 to 2021, zero between 2021 and 2022 (only one was found in Cleveland 

Bay in 2022) and different between 2022 and 2023. Movement between 2023 and 2024 was 

fitted separately in one model and equal to the movements between 2019 and 2021 in 

another. The best-fitting model had the movement between Cleveland and Halifax Bay 

between 2023 and 2024 equal to the movement between 2021 and 2022 and the movement 

between Halifax Bay and Cleveland Bay equal to the movements between 2019 and 

2021.All attempts to model temporary emigration from either Bay for snubfin dolphins 

produced estimates that were either very small with a large standard error or very large with 

a standard error of zero indicating improper estimation. Consequently, temporary emigration 

from both Bays was fixed at zero and not estimated in any model reported here. Subject to 

the constraints described above, movements between sites were modelled as constant over 

time and of even flow (equal in both directions), random (complementary between 

directions) or Markovian (flows in the two directions independent) forms. Apparent survival 

was fitted as constant over all years and both sites and separately as constant over years 

within but different between sites. The final set for averaging included six models. 

For humpback dolphins, apparent survival was fitted as equal or different for the two 

sites, movement between sites was fitted as equal or different in both directions, and 

temporary emigration was fitted as zero for Cleveland Bay and equal or different from and 

to Halifax Bay. Even flow structures were clearly superior to random structures and only 

these and the Markovian structures (different between directions) were included in the final 

set of models. The final model set for averaging included six models.  
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 Australia snubfin dolphin: population parameters 2019-2024 

Five models fitted to the snubfin dolphin data were considered to have yielded reliable 

estimates of all population parameters, except for abundance. Model averaged estimates of 

the parameters are reported in Table 7. 

The proportion of snubfin dolphins bearing distinctive marks was estimated at 0.90 

with SE = 0.010. This was employed together with the estimated sizes of the marked 

populations to calculate estimated total population sizes (Table 7). The total population sizes 

are plotted with their 95% confidence intervals for Cleveland and Halifax Bays in each year 

2019 to 2024 in Figure 8. The total estimated abundance of snubfin dolphins in Cleveland 

Bay was reasonably consistent over the first three years of survey at 31 in 2019, 42 in 2020 

and 34 in 2021 (Fig. 8). The estimated total abundance of snubfin dolphins in Cleveland Bay 

in 2024 was 33, representing a return to an approximately pre 2022 number after the low 

numbers in 2022 and 2023. In terms of the numbers of captures, there was a very large 

decline in numbers in 2022 and a slight recovery in 2023, but as previously discussed, the 

resulting abundance estimates for these two years (as shown in Table 7) are considered 

unreliable (with wide confidence intervals) and are likely to be overestimated. A model that 

assumed the probability of capture in these years was the same as the mean from the first 

three years failed to yield an estimate for 2022 and estimated 13 for 2023. The estimated 

total abundance of snubfin dolphins in Halifax Bay decreased from 56 in 2019 to 35 in 2020 

and 31 in 2021 before increasing greatly to 111 in 2022 before falling to 73 in 2023 and 60 

in 2024 (Table 7, Fig. 8). 

Estimates for the average rate of apparent survival (alive and remaining in the bay) 

of snubfin dolphins in the intervals between consecutive years between 2019 and 2024 were 

very similar for the two bays at an average of 0.80 (95% CI = 0.72 – 0.86). With an estimated 

rate of biological survival of snubfin dolphins of 0.95 p.a. (Taylor et al. 2007), the estimated 
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rate of permanent emigration is 16% p.a., i.e., 16% have left each Bay, have not moved to 

the other, and our modelling suggests they may not return. 

The rate of movement (estimated probability of movement) between Cleveland Bay 

and Halifax Bay between 2019 and 2020, and 2020 and 2021 was 0.14 (i.e. an estimated 

14% of the dolphins moved from Cleveland Bay to Halifax Bay). This increased to 0.42 

between 2021 and 2022 while movement out of Cleveland Bay could not be estimated 

between 2022 and 2023 with only one dolphin captured in Cleveland Bay in 2022. The rate 

of movement from Cleveland to Halifax Bay between 2023 and 2024 was similar to the rate 

between 2021 and 2022 at 0.41 indicating that the relatively high rate of movement out of 

Cleveland Bay has continued through to 2024. The rate of movement from Halifax Bay to 

Cleveland Bay between 2019 and 2020, and 2020 and 2021 was greater than the rate of 

movement in the other direction at 0.24.The rate of movement from Halifax Bay to Cleveland 

Bay between 2021 and 2022 could not be estimated with only one dolphin captured in 

Cleveland Bay in 2022, and the rate between 2022 and 2023 was very small, could not be 

reliably estimated and was also fixed at zero. Movement between 2023 and 2024 returned 

to the rate seen previously between 2019 and 2021 or slightly greater at 0.27. Although data 

limitations have posed difficulties for estimation, these estimates provide evidence of 

movement out of Cleveland to Halifax Bay in the year before 2022 and indicate that the rate 

of return from Halifax to Cleveland Bay has returned to approximately the rate seen 

previously between 2019 and 2021. The estimated probability of movement from Cleveland 

Bay to Halifax Bay was 0.41 between 2023 and 2024, consistent with the 2021–2022 

estimate, indicating continued high emigration from Cleveland Bay through 2024. In 

contrast, the probability of movement from Halifax Bay to Cleveland Bay was 0.27 during 

the same period, returning to levels observed between 2019 and 2021. 
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The capacity of the models to estimate temporary emigration was severely limited by 

the very small numbers present in Cleveland Bay in 2022 and 2023 and relatively small 

numbers of captures generally. It was not possible to estimate temporary emigration from 

and to Halifax Bay, and the estimates for temporary emigration from and to Cleveland Bay 

were very small and fixed at zero to facilitate reliable estimation of other parameters.  
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Table 7. Australian snubfin dolphin: Multistate Closed Robust Design (MSCRD) model averaged 

estimates of population parameters, their standard errors (SE) and 95% confidence intervals (lower 

and upper limits) for Cleveland Bay (CB) and Halifax Bay (HB). All estimates are probabilities  

per individual of relevant species, except population sizes.  

 
Parameter* Bay Year Estimate SE LCI UCI 
Apparent survival (φ) CB 2019-2024 0.80 0.04 0.72 0.86 

Apparent survival (φ) HB 2019-2024 0.79 0.03 0.72 0.85 

Movement between sites (ψMS) CB to HB 

2019-2020 0.14 0.06 0.05 0.31 

2020-2021 0.14 0.06 0.05 0.31 

2021-2022 0.42 0.11 0.23 0.63 

2022-2023 0.00 0.00 0.00 0.00 

2023-2024 0.41 0.12 0.21 0.64 

Movement between sites (ψMS) HB to CB 

2019-2020 0.24 0.07 0.13 0.40 

2020-2021 0.24 0.07 0.13 0.40 

2021-2022 NIL (fixed) NA NA NA 

2022-2023 NIL (fixed) NA NA NA 

2023-2024 0.27 0.09 0.12 0.49 

Temporary emigration from (ψTE) 
CB 2019-2024 NIL (fixed) NA NA NA 

HB 2019-2024 NIL (fixed) NA NA NA 

Marked population size (Nmarked) CB 

2019 28 3.42 22 35 

2020 37 7.44 23 52 

2021 31 9.08 13 49 

2022 13 ∗ (See text) 18.34 -23 49 

2023 24 ∗ (See text) 11.75 1 47 

2024 30 9.34 12 48 

Marked population size (Nmarked) HB 

2019 50 9.53 32 69 

2020 32 3.72 24 39 

2021 28 7.83 13 43 

2022 100 21.40 58 142 

2023 65 8.14 50 81 

2024 54 3.43 47 60 

Total population size (Ntotal) 
 

CB 

2019 31 3.81 25 40 

2020 41 8.28 28 61 

2021 34 10.10 20 60 

2022 14 * (See text) 20.38 2 113 

2023 27 * (See text) 13.06 11 66 

2024 33 10.38 18 61 

HB 2019 56 10.61 39 81 
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Parameter* Bay Year Estimate SE LCI UCI 
2020 35 4.15 28 44 

2021 31 8.71 18 53 

2022 111 23.81 73 168 

2023 73 9.08 57 93 

2024 60 3.87 52 68 

 

*Parameters:  

• Nmarked: estimate of the “marked” population size. 

• Ntotal: estimate of the total population size considering proportion of unmarked animals in the population. 

• φ: estimate of apparent survival. 

• ψMS: estimate of transition probability/movement between sites. 

• ψTE: estimate of temporary emigration. 

∗ These estimates are considered unreliable. See text.
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Figure 8. Estimates of the total population size of Australian snubfin dolphins with 95% 

confidence intervals in Cleveland (CB) and Halifax Bays (HB) for the years 2019 to 2024. 

The estimates for Cleveland Bay in 2022 and 2023 are considered unreliable (*) and are 

likely overestimated (see text).  

 Australian humpback dolphin: population parameters 2019-2024. 

Six models for the humpback data were considered to have yielded reliable estimates 

of all parameters. Model averaged estimates of the parameters are reported in Table 8.  

The proportion of humpback dolphins bearing distinctive marks was estimated at 0.88 

with SE = 0.009. This was employed together with the estimated sizes of the marked 

populations to estimate total population sizes (Table 8). The total population sizes are 

plotted with their 95% confidence intervals for Cleveland and Halifax Bays for the years 2019 

to 2024 in Figure 9. The number of humpback dolphins present in Cleveland Bay increased 

from 20 in 2019 to 32 in 2020 and 2021 and increased again to 48 in 2022 and 81 in 2023 

but declined slightly to 68 in 2024 (Fig. 9).  
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There were more humpback dolphins present in Halifax Bay than Cleveland Bay in 

all years, with 66 in 2019, 53 in 2020, 45 in 2021, 80 in 2022, 87 in 2023 and 122 in 2024 

(Fig. 9, Table 8). It appears that as suggested from the relatively large numbers of humpback 

dolphins first identified in both bays in the last three years (Table 5) that there may have 

been immigration into both bays in these years and to Halifax Bay between 2023 and 2024 

in particular. 

Estimates for the average rate of apparent survival (alive and remaining in the bay) 

in the intervals between consecutive years between 2019 and 2024 were the same for both 

bays at 0.80 p.a. (Table 8). With an estimated rate of biological survival of humpback 

dolphins of 0.97 p.a., the estimated rate of permanent emigration was 17.5% p.a. from both 

bays. This is a quite high rate of permanent emigration but one that has been more than 

balanced by immigration in recent years indicating substantial connectivity between the 

Townsville humpback dolphin populations and populations elsewhere. 

The average rates of movement between the Bays in the intervals between 

consecutive years between 2019 and 2024 were approximately equal in both directions at 

an average of 0.21 p.a. (Table 8). That is a substantial proportion (21%) in the context of 

ecological and demographic processes of small populations, especially for species like 

dolphins that often show strong site fidelity. Estimates of temporary emigration from each 

Bay differed at zero for Cleveland Bay and at 0.27 p.a. for Halifax Bay; suggesting that while 

all humpback dolphins present in Cleveland Bay during one sampling season were 

estimated to also be present in the next, about 27% of humpback dolphins present in one 

sampling season in Halifax Bay were absent for the duration of the next. Return of previously 

emigrated humpback dolphins to a Bay was estimated at zero for Cleveland Bay and at 0.53 

p.a. for Halifax Bay. These rates of temporary emigration from and return to Halifax Bay may 

be part of a flow of humpback dolphins between Halifax Bay and another population nearby. 



 

74 
 

Table 8. Australian humpback dolphins: Multistate Closed Robust Design (MSCRD) model 

averaged estimates of population parameters, their standard errors (SE) and 95% 

confidence intervals (lower and upper limits) for Cleveland Bay (CB) and Halifax Bay (HB). 

All estimates are probabilities per individual of relevant species, except population sizes.  

 
*Parameters:  
• Nmarked: estimate of the “marked” population size. 

Parameter* Bay Year Estimate SE LCI UCI 
Apparent survival (φ)  CB 2019-2024 0.80 0.04 0.72 0.87 

Apparent survival  HB 2019-2024 0.80 0.04 0.72 0.87 

Movement between sites (ψMS) 
CB to HB 2019-2024 0.22 0.04 0.15 0.30 

HB to CB 2019-2024 0.20 0.03 0.14 0.27 

Temporary emigration from (ψTE) 
CB 2019-2024 0.00 0.00 0.00 0.00 

HB 2019-2024 0.27 0.07 0.15 0.43 

Return of previously emigrated dolphins to (ψTE) 
CB 2019-2024 0.00 0.00 0.00 0.00 

HB 2019-2024 0.53 0.24 0.15 0.88 

Marked population size (Nmarked) 

CB 2019 17 2.07 13.43 21.56 

CB 2020 17 2.07 13 22 

CB 2021 28 4.04 20 36 

CB 2022 28 3.38 21 34 

CB 2023 41 6.69 28 54 

CB 2024 70 9.87 50 89 

HB 2019 57 9.60 38 76 

HB 2020 46 6.62 33 59 

HB 2021 39 6.07 27 51 

HB 2022 69 18.35 33 105 

HB 2023 75 17.60 40 109 

HB 2024 105 10.09 86 125 

Total population size (Ntotal) 

CB 2019 20 2.42 16 26 

CB 2020 32 4.71 24 43 

CB 2021 32 3.94 26 41 

CB 2022 48 7.80 35 66 

CB 2023 81 11.51 62 107 

CB 2024 68 7.95 54 85 

HB 2019 66 11.19 47 92 

HB 2020 53 7.72 40 71 

HB 2021 45 7.07 33 61 

HB 2022 80 21.36 48 134 

HB 2023 87 20.49 55 137 

HB 2024 122 11.80 101 148 
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• Ntotal:estimate of the total population size taking into account proportion of unmarked animals in the 
population. 
• φ: estimate of apparent survival. 
• ψMS: estimate of transition probability/movement between sites. 
• ψTE: estimate of temporary emigration. 

 

Figure 9. Estimates of total population size with 95% confidence intervals of Australian 

humpback dolphins in Cleveland (CB) and Halifax Bays (HB) for the years 2019 to 2024. 
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3.2 Spatial distribution modelling 

 Model performance and spatial predictions 

In 2024, 35 encounters with groups of snubfin dolphins and 61 encounters with 

groups of humpback dolphins were recorded. The number of points representing the 

pseudo-zeros for the snubfin dolphins SDM was 1003 and 977 for the SDM of humpback 

dolphins. 

Overall, the final ensemble models for generating species distribution plots for 2024 

had good predictive performance. Humpback dolphin’s model had slightly lower 

performance in comparison to 2023, whereas the snubfin model had better performance. 

The ensemble model for humpback dolphins obtained a global cv-ROC-AUC of 0.820 (lower 

than the 2023 value of 0.833 and the 2022 value of 0.840) and a cv-precision-recall-AUC of 

0.342 (lower than the previous two-years values of 0.38 and 0.462, respectively). For snubfin 

dolphins, the global cv-ROC-AUC was 0.860 (higher slightly than the previous two years’ 

values of 0.853 and 0.833); the cv-precision-recall-AUC was 0.278 (compared to the 

previous two years’ values of 0.300 and 0.217). 

The per-year predictive performance (cv-ROC-AUC) for humpback dolphins, using 

the 2023 ensemble model, were 0.884, 0.929, 0.805, 0.785, 0.733, and 0.784, for survey-

years 2019 through to 2024, respectively. This suggests that earlier years (2019-2021, 

especially 2020) had better predictive performance than latter years (2022-2024). The per-

year predictive performance for snubfin dolphins, using the 2023 ensemble model, were 

0.898, 0.919, 0.779, 0.821, 0.829, 0.879, for survey-years 2019 through to 2024, 

respectively. Similar to the humpback model, the 2020 survey year had the strongest 

predictive performance, but 2021 had the lowest predictability.  
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 Relative Variable Importance 

For snubfin dolphins, the order of RVIs was: an unexplained spatial process (30.9%), 

log-distance to seagrass meadows (10.7%), depth (9.8%), log-distance to river (9.5%), log-

distance to land (8.4%), log-distance to the foreshore (5.3%), log-distance to reefs (4.9%), 

year as a categorical variable (3.1%), SST (2.7%), counts of large boats (2.6%), counts of 

industrial boats (2.2%), salinity (2.0%), log-distance to rock-dumping (1.34%), time-of-day 

(1.14%), and turbidity (0.9%) (Fig. 10a) . 

For humpback dolphins, the most important explanatory variable was the flexible 

spatial base-learners, representing unexplained spatial variation, and accounted for 29% of 

risk-minimisation (Fig. 10b). Thereafter, the most important variables were log-log-distance 

to land (22%), then log-distance to rivers (16%), depth (9.0%), SST (8.4%), year as a 

categorical variable (2.9%), counts of large boats (1.58%), counts of all boats (1.24%), time-

of-day (1.03%), log-distance to seagrass meadows (0.77%), counts of small boats (0.75%), 

swell (0.68%), log-distance to maintenance dredging (0.58%). All covariates thereafter had 

RVIs of less than 0.5%. Compared to the 2023 humpback RVIs, most of the top covariates 

had similar percentages and ordering. However, the 2023 model attributed a 0.8% RVI to 

distance to maintenance dredging. 

Unlike the humpback models, the ordering and percentages of snubfin RVIs in 2024 

were somewhat different as compared to the 2023 RVIs. For instance, the top 5 covariates 

in 2023 were: unexplained spatial process (45%), distance to rivers (12%), depth (9.9%), 

distance to land (6.6%), distance to foreshore (5.3%). It is noteworthy that the 2024 snubfin 

model had more variation explained by named environmental predictors and temporal 

variables, rather than an unexplained spatial processes. This corresponds to a much better 

predictive performance for the 2024 model (cv-ROC of 0.860 vs 0.833 in 2023), suggesting 

that the inferences from the 2024 RVIs may be more trustworthy than previous models. It is 
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also noteworthy that whereas the 2023 snubfin model allocated a relatively high RVI to the 

covariate representing distance to maintenance dredging (2.5%), this covariate was not 

important in the 2024 model, but was replaced by a higher importance of rock-dumping 

(1.34%). 

For both species, the human-related covariates, such as counts of boats, seemed to 

have systematic and measurable effects, but whose contributions are relatively small 

(<<5%) compared to other environmental predictors. Furthermore, the distribution-related 

covariates (like maintenance dredging) received lower RVIs in 2024 despite having modest 

RVIs in 2023. It could be that, for past-years’ analyses, the effect of disturbance is more 

pronounced given its proportionally higher-share of the data, whereas the addition of post-

disturbance data from 2024, swamps their weak by natural variation. 

 As mentioned in past reports, the presence of multi-collinearity among 

covariates means that it is difficult to uniquely assign RVI to any one particular covariate 

(Bühlmann et al. 2013)., especially when there is a highly flexible non-linear spatial spline 

that can act as a “catch-all” representation of the spatial variation that would otherwise be 

more causally related to other interpretable covariates. 
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a)  

 
 

b)  

Figure 10. The relative variable importance (contribution to risk-minimisation) of each 

covariate considered in ensemble species distribution modelling of a) Australian snubfin and 

b) humpback dolphins based on data collected in 2024. 
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 Likelihood Ratio Tests Disturbance Covariates 

We performed a 5-fold cross-validation to compare the CV-likelihood of the base-

model versus a reduced model that dropped the five disturbance covariates (distance to 

pilings, distance to dumping, distance to capital dredging, distance to maintenance dredging, 

and minimum distance to any disturbance covariate). Note that, within this set of covariates, 

only maintenance dredging is classified as a non-CU activity. Likelihood ratios above 1 

indicate support for the reduced model without the disturbance covariates, whereas ratios 

below 1 indicate support for the full model that includes the disturbance covariates. 

 For snubfin dolphins, the CV-likelihood ratio was 1.6x10-24<<1, supporting the 

full model that included disturbance variables. The relative variable importance (RVI) 

analysis suggests that distance to rock-dumping was most strongly associated with model 

fit, with distance to maintenance dredging also contributing (RVI = 0.8%), both showing 

positive associations with snubfin dolphin distribution.  

For humpback dolphins, the CV-likelihood ratio was 1.0x10-35 <<1, also supporting 

the full model that included disturbance variables. The analysis suggest that maintenance 

dredging was the disturbance variable most strongly associated with the model outcomes, 

indicating a positive relationship with humpback dolphin occurrence. 

 Covariate Two-Way Interaction Partial Plots 
 

We made partial plots of two-way interactions between pairs of covariates and the 

marginal predicted density, after marginalizing-out the contributions of the flexible spatial 

base-learners (i.e., as visualised in the SDM maps) (Fig. 11). Such partial plots help to 

visualise the complex influence of covariates on species’ abundance. We used two-way 

interaction plots because of inherent interactive nature of the underlying machine-learning 
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method, in which the relationship between predictors and response variables may change 

as a function of other variables, and so cannot be perceived independently.  

 There are too many plots to present here (they are available upon request). 

Instead, we subjectively describe the functional relationships simple as large increase, 

moderate increase, small increase, small decrease, moderate decrease, and large 

decrease, in additional to any other notes.  

Snubfin Functional Relationships with Covariates (2024) 

• Distance to seagrass meadows: large increase (i.e., species density increased further 

away from seagrass meadows). 

• Depth: large decrease (i.e., species density decreased in deeper waters), however, 

it depended on other covariates, and in many cases showed a non-linear concave-

up pattern. 

• Distance to river: large decrease (i.e., species density decreased at further distances 

from rivers), non-monotonic, with a slight concave-down peak at small distances, and 

whose effect was especially pronounced in the presence of boats. 

• Distance to land: moderately concave-down effect (i.e., inverted u-shape), with a 

pronounced peak occurring a mid-distances. 

• Distance to the foreshore: small decrease (i.e., species density decreased as 

distance increased) with a slight concave-down peak at moderate distances, and 

declining further away. 

• SST: moderately-small decrease (i.e., higher temperatures had lower species 

density), but also often with a pronounced concave-down profile, whereby species 

density peaked at middle temperatures, and declined rapidly at cooler temperatures, 

and a shallower decline at higher temperatures. 
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• Distance to reefs: small increase (i.e., as the distance from reefs increased, the 

species density increased). 

• Counts of industrial boats: small increase (i.e., the species density increased as the 

counts of boats increased). 

• Distance to rock-dumping: small decrease, non-linear (i.e, the species density 

decreased further away from the rock-dumping).  

• Counts of large boats: small increase. 

• Salinity: small decrease. 

• Time-of-day/hour: small concave-up shape, such that there were higher species 

densities during earlier hours, followed by a decrease, and then a large rise in the 

late survey hours.  

Humpback Dolphins Functional Relationships with Covariates (2024): 

• Distance to land: strong increase (i.e., species density increased as the distance from 

land increased), non-linear, whereby most of the increase happened at the furthest 

distances from land. 

• Distance to rivers: strong decrease (i.e., species density declined with increasing 

distance from rivers), non-linear with a sigmoidal shape. 

• Depth: moderate decrease (i.e. species density decreased in deeper waters), highly 

non-linear, with a flat response in mid-to-shallow waters followed by large decreases 

in deep waters. 

• SST: moderate increase. 

• Counts of large boats: moderate increase. 

• Counts of all boats: moderately small increase. 



 

83 
 

• Time-of-day/hour: moderately small concave-up non-linear effect (i.e., high species 

density occurred during the early and late survey hours, with lower density in 

between). 

• Distance to seagrass meadows: small increase, but varied according to other 

covariates (e.g., there was a declining-relationship when paired with dredging, but a 

positive-relationship when paired with swell). 

• Counts of small boats: small decrease. 

• Swell: small increase 

• Distance to maintenance dredging (Year 3) small decrease. 

 

The reader should note that the relationships could change under multi-way interactions and 

different years. 
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Figure 11. Examples of two-way partial plots for humpbacks (top) and snubfin (bottom) 

predicted marginal density, where the x-axes are two interacting covariates, and the y-axis 

is marginal density. Notice the different colour-coded scales of the y-axis, per plot. The x-

axis have been mean-centred and re-scaled to unit variance. 

 Plots and Summaries of Spatially Varying SDM Components 

The spatial partial plots of snubfin and humpback dolphins across the survey area 

are shown in Figures 12 and 13 respectively. These plots show three series: the probability 

of occurrence per year (Figs. 12a-f and 13a-f), the conditional group size (i.e., the size of an 
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encounter, if a group is present) per year (Figs. 12g-l and 13g-l), and relative density per 

year (Figs. 12m-r and 13m-r). The first two components (occupancy and conditional counts), 

constitute the zero-inflated Poisson bivariate distribution. The third series, the relative 

density, is the probability of occupancy multiplied by the conditional counts per year. Note 

that the influence of temporal covariates (time-of-day, day-of-year) and environmental 

conditions (swell, BSS, glare, visibility) have been removed by conditioning the plots on the 

global averages of temporal-covariates. For those years in which a log-distance-to-

disturbance was present (like distance-to-TSHD or distance-to-rock dumping), the SDM the 

model is conditioned on the disturbance being present. 

Snubfin dolphin occurrence and relative density showed significant yearly variation, 

with a sharp decline in Cleveland Bay occupancy in 2022 and no dolphins estimated there 

in 2023.The 2024 predictions of spatial occurrence of snubfin dolphins (Fig 12f) and their 

relative density (Fig 12r) were more similar to the 2019 pattern, in which there was a higher 

relative concentration of snubfins along the south-western nearshore of Cleveland Bay 

around the Port of Townsville, and the south-eastern nearshore of Halifax Bay, and almost 

no presence and densities in offshore waters.  

The predictions of humpback dolphin occurrence and relative density across all years 

are very similar in overall pattern, except for some differences in some areas of punctuated 

densities. Across all years, there was high occupancy (Fig. 13a-f) and density (Fig 13m-r) 

to the north and to the east of Port of Townsville, along the shore of Cleveland Bay, as well 

as a large expanse of high-occupancy and density between Toolakea beach and Cape 

Pallarenda along the shore of Halifax Bay. Unlike snubfins, humpbacks were consistently 

present in Cleveland Bay in all years, particularly around the Port Townsville and to the east 

of the port (Fig 13a-f). In 2024 the spatial patterns of density in Cleveland and Halifax Bays 

exhibit a similar pattern t to 2023, but with a higher overall density (Fig. 13m-r). For instance, 
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whereas a diffuse cloud of relatively high density enveloping the nearshore of Port of 

Townsville in 2023, for 2024 this is also predicted to have a singular point of very high 

densities to the east of Port of Townsville. Also, in the eastern nearshore region of Cleveland 

Bay, the 2024 SDM suggests there is also a singular point of very high density in 2024 (and 

in 2021), whereas in 2023 this was a more diffused region of moderately high density. This 

could be due to an increased confidence as more data is accumulated over the years, 

resulting in less “shrinkage” towards zero (i.e., models without a lot of data). 
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a) 2019      b) 2020      

  
c) 2021      d) 2022      

  
e) 2023      f) 2024 
 
Figure 12. Spatial partial plots of Australia snubfin dolphins from ensemble-modelling of species 
distribution across the survey area based on data collected in 2019, 2020, 2021, 2022, 2023 and 
2024: (a-f) shows how the probability of dolphins’ presence/absence varies spatially over the 
study area, (g-l) shows how expected group size varies spatially (conditional on being present), 
and (m-r) shows the relative density function of dolphins across the bays.  
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g) 2019      h) 2020      

  
i) 2021      j) 2022      

  
k) 2023      l) 2024 
 
Figure 12 (continued). Spatial partial plots of Australia snubfin dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area, (g-l) shows how expected group size varies spatially (conditional on 
being present), and (m-r) shows the relative density function of dolphins across the bays.  
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m) 2019       n) 2020      

  
o) 2021      p) 2022      

  
q) 2023      r) 2024 
 
Figure 12 (continued). Spatial partial plots of Australia snubfin dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area, (g-l) shows how expected group size varies spatially (conditional on 
being present), and (m-r) shows the relative density function of dolphins across the bays.  
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a) 2019      b) 2020      

  
c) 2021      d) 2022      

  
e) 2023      f) 2024 
 
Figure 13. Spatial partial plots of Australia humpback dolphins from ensemble-modelling of 
species distribution across the survey area based on data collected in 2019, 2020, 2021, 2022, 
2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies spatially 
over the study area, (g-l) shows how expected group size varies spatially (conditional on being 
present), and (m-r) shows the relative density function of dolphins across the bays.  
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g) 2019      h) 2020       

  
i) 2021      j) 2022       

  
k) 2023      l) 2024 
 
Figure 13 (continued). Spatial partial plots of Australia humpback dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area, (g-l) shows how expected group size varies spatially (conditional on 
being present), and (m-r) shows the relative density function of dolphins across the bays.  
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m) 2019      n) 2020       

  
o) 2021      p) 2022       

  
q) 2023      r) 2024 
 
Figure 13 (continued). Spatial partial plots of Australia humpback dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area, (g-l) shows how expected group size varies spatially (conditional on 
being present), and (m-r) shows the relative density function of dolphins across the bays. 
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Regarding the decomposition of the expected counts into its occupancy and 

conditional group-size components, there were some interesting contrasts between species. 

For humpbacks, the conditional group-size exhibited erratic spatial-variation across the 

offshore regions, especially in 2020, 2021 and 2022 (Fig. 13g-l). Group-sizes in 2022 were 

high around the Port of Townsville (northeast and southeast of port, Fig. 13j), and small 

between Port of Townsville and Magnetic Island, both locations being in the vicinity where 

capital dredging occurred. 

 For snubfins, the occupancy component was roughly in-line with the expected 

counts, and was clearly the dominant component, whereas the conditional group-size 

component was more uniform across space. Two exceptional areas of very high (shown in 

red) conditional group-size were: i) to the west of Magnetic Island on the nearshore 

boundary between Cleveland and Halifax Bays; and ii) between Port Townsville and 

Magnetic Island., in the vicinity of capital dredging and piling activities (both of which were 

present in 2022). 

For snubfins, Table 9a shows the average predicted values (for predicted occupancy 

and expected) across years, strata (Cleveland Bay vs. Halifax Bay), and inshore waters vs. 

offshore waters. Table 9b shows the same for humpback dolphins. For snubfin dolphins, the 

2024 values showed a pattern of being high in the inshore waters, and low in the offshore 

waters. For instance, whereas the relative density of snubfins in Halifax Bay’s and Cleveland 

Bay’s inshore waters were higher than the respective values in 2019, 2020, 2022, and 2023, 

the offshore values were the lowest in the time series. 

 

For humpbacks, the 2024 fields obtained values for occupancy and relative density 

that were in-line with past years’ values for most strata, and for some waters, were much 
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higher. For instance, in the inshore waters of Cleveland Bay, the mean relative densities 

were predicted to be the highest areas all years, attaining a 64% premium over the 2019 

pre-construction baseline. In contrast, the offshore waters of Halifax Bay had the highest 

mean relative densities across all years. The fact that such high-rankings for 2024 were not 

also shown in the expected occupancies (which were close to median values over the time-

series), suggest that it was the group-size which drove the overall higher relative densities.  
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Table 9. Summaries of a) snubfin dolphins and b) humpback dolphins predicted occupancy 

and relative density, by strata and year.  

a) Snubfin dolphins 

 Expected Occupancy Expected Counts 
 Halifax Bay Cleveland Bay Halifax Bay Cleveland Bay 
Year inshore offshore inshore offshore inshore offshore inshore offshore 
2019 0.051 0.012 0.050 0.013 0.475 0.108 0.396 0.015 
2020 0.021 0.004 0.026 0.013 0.324 0.051 0.347 0.014 
2021 0.087 0.011 0.056 0.007 2.457 0.487 0.723 0.012 
2022 0.109 0.005 0.021 0.013 0.629 0.031 0.130 0.013 
2023 0.084 0.016 0.010 0.010 0.444 0.072 0.021 0.013 
2024 0.074 0.003 0.057 0.006 0.727 0.029 0.531 0.007 

 
b) Humpback dolphins  
 

 Expected Occupancy Expected Counts 
 Halifax Bay Cleveland Bay Halifax Bay Cleveland Bay 

Year inshore offshore inshore offshore inshore offshore inshore offshore 
2019 0.29 0.23 0.23 0.08 1.41 0.53 0.89 0.09 
2020 0.1 0.08 0.07 0.03 0.6 0.17 0.37 0.02 
2021 0.16 0.12 0.13 0.05 1.59 1.2 1.28 0.3 
2022 0.2 0.13 0.13 0.05 1.22 0.88 1.01 0.12 
2023 0.17 0.13 0.13 0.05 0.51 0.39 0.34 0.1 
2024 0.19 0.13 0.11 0.02 1.1 0.94 1.46 0.13 

 

3.3  Patterns of attendance to the port area 

 Land based survey effort 

During the 2024 field season, there were 12 days of land-based surveys, conducted 

between June 4th and June 18th. There was a total of 766 scans (compared to 870 scans 

in 2019, 948 in 2020, 1533 in 2021, 1490 scans in 2022, and 1164 scans in 2023 Table 10). 

The lower number of scans in 2024 was due to land-based observations being restricted to 

a short window from June 4 to 18, as Berth 11 was closed from June 19 to August 1 for 

scheduled shipping activities and essential maintenance on the ship loader. Despite the 
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fewer number of scans, there were many more humpbacks and snubfins observed from the 

land-based station as compared to previous years: humpbacks were observed on 11 of the 

12 survey-days; snubfins were observed on 5 days (compared to 0 in 2023 and 1 in 2022). 

As in previous years, no bottlenose dolphins were seen in 2024. 

Table 10. Survey effort and dolphins observed from Berth 11 at the Port of Townsville 

during June 2024. BSS= Beaufort Sea State at which observations were conducted.  

Date Number 
of scans 

Number of 
scans with 
humpback 
dolphins 
present 

Number 
of scans 

with 
snubfin 
dolphins 
present 

Number of 
scans with 
bottlenose 
dolphins 
present 

BSS 
min 

BSS 
Mode 

BSS 
Max 

4/06/2024 64 0 0 0 0 2 3 
5/06/2024 64 1 0 0 1 1 1 
6/06/2024 64 2 0 0 1 1 2 
7/06/2024 64 4 0 0 0 1 3 
8/06/2024 64 11 0 0 1 1 4 

10/06/2024 64 16 2 0 1 1 4 
11/06/2024 66 3 0 0 0 1 4 
12/06/2024 64 4 1 0 0 1 3 
14/06/2024 62 3 0 0 0 1 3 
15/06/2024 62 2 6 0 0 1 3 
17/06/2024 64 7 1 0 1 1 3 
18/06/2024 64 7 2 0 1 1 4 

Total 766 60 12 0    

 Overall difference in dolphin occurrence between years 

For humpbacks dolphins, all the Bayesian p-values that compared the 2024 scans 

versus survey-years 2019 through to 2023 were close to 1.0 (Table 11), i.e., the number of 

encounters of humpback dolphins were in line (or greater) than the expectations of previous 

years. This was driven by a large number of scans with humpbacks and fewer overall scans 

than in previous survey years (i.e., large numerator and smaller denominator). 
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For snubfin dolphins, the 2024 survey year yielded a relatively high number of snubfin 

observations as compared to the previous two survey years, in which there were one or no 

snubfins. However, the Bayesian p-values for 2019 (baseline) and 2020 were close to zero, 

and the 2021 p-value was intermediate (Table 11). This suggests that encounters of snubfin 

dolphins were higher around the port in earlier years (2019-2020), declined into 2022 and 

2023, and then returned in 2024 to values similar to the 2021 year. 
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Table 11. Comparison of dolphin occurrences between 2024 and all other years and 

corresponding Bayesian P-values. 

a) 2019-2024 

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2019 867 49 

0 
2024 766 12 

Humpback  
2019 867 19 

1 
2024 766 60 

b) 2020-2024 

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2020 948 34 

0.004 
2024 766 12 

Humpback  
2020 948 7 

1 
2024 766 60 

c) 2021-2024 

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2021 1533 27 

0.36 
2024 766 12 

Humpback  
2021 1533 32 

1 
2024 766 60 
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d) 2022-2024 

e) 2023-2024 

Species Year N Scans 
N Occurrences of 

Dolphins 
Bayesian P-value 

Snubfins 
2023 1164 0 1 

2024 766 12 1 

Humpbacks 
2023 1164 53 1 

2024 766 60 1 

  

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2022 1490 1 

1 
2024 766 12 

Humpback  
2022 1490 65 

1 
2024 766 60 
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 Diel and behavioural patterns observed 

Among the behaviours observed for snubfin dolphins in 2024, travelling was the most 

common (67%), followed by foraging (17%), with no other behaviours observed (Table 12). 

This is not surprising given the low number (n =6) of snubfin dolphin groups observed in 

2024. Foraging was observed only in the late afternoon, and all other time-periods consisted 

of travelling (Fig. 14a). Across all survey years, the composition of snubfin behaviours was 

more erratic than for humpbacks, e.g., in the early survey years (2019-2021) foraging was 

the dominant behaviour, followed by travelling and/or socialising, which contrasts with 2024. 

The all-year pooled behavioural composition showed more regularity in behaviours across 

time-intervals, such that foraging was the dominant behaviour across all time intervals, 

followed by travelling, then socialising, and resting occurring more rarely (Fig. 15a) The 

majority of snubfin dolphin groups across years were sighted during the morning and early 

afternoon (06:00–13:00) (Fig 15a). 

In 2024, humpback dolphins were mainly observed foraging (39%; Table 12), 

followed by travelling (32%), then socialising (25%). These behaviours were especially 

dominant in the morning between 9:00 am to 11:00 am (Fig. 14b). While the proportion of 

foraging in 2024 is low, it still remains the most common activity observed, both in that year 

and across the full dataset. The composition of behaviours was relatively stable across the 

latter survey years, with more erratic ordering of behaviours in the early years, e.g., in years 

2020 and 2021, socialising was the second-most common behaviour after foraging. Figure 

15b shows the all-year pooled summaries of behaviours, which shows more consistency in 

behaviours across time-intervals (i.e., each time-interval showed a consistent ordering of 

behaviours whereby foraging was the most common, followed by travelling, and then 

socialising. The majority of humpback dolphin groups across years were sighted during the 

morning and early afternoon (06:00–13:00) (Fig 15a).  
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Table 12. The total number of scans where either species was present (and behaviour could 

be determined) during land-station surveys from 2019 to 2024, and the proportion of times 

they were observed engaged in foraging, resting, socializing, and travelling behavior. The 

aggregated numbers for all survey years (“pooled”) are also shown below. 

Species Year 

Number of 
Scans with 

Species 
Present 

Foraging Resting Socialising Travelling 

Snubfin 

2019 47 0.62 0.02 0.04 0.32 

2020 29 0.97 0.03 0.00 0.00 

2021 24 0.54 0.00 0.25 0.21 

2022 1 0.00 0.00 0.00 1.00 

2023 0 0 0 0 0 

2024 6 0.17 0 0 0.67 

Pooled 107 0.66 0.02 0.08 0.23 

Humpback 

2019 18 0.50 0.00 0.00 0.50 

2020 7 0.71 0.00 0.29 0.00 

2021 29 0.52 0.00 0.31 0.17 

2022 59 0.44 0.02 0.15 0.39 

2023 52 0.48 0.04 0.08 0.4 

2024 44 0.39 0 0.25 0.32 

Pooled 209 0.46 0.01 0.17 0.34 

* Note: discrepancies in counts with other tables due to NA in behaviours 
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a) 

 
b) 

Figure 14. a) Australian snubfin and b) humpback dolphin observations by time of day (2-3 

hourly bins) in 2024. Bar height represents densities of counts (number of dolphin’s groups 

seen divided by number of scans); bar compositions represent proportion time observed in 

various behaviours. 
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a) 

 
b) 

Figure 15. Pooled observations (2019 to 2024 inclusive) of a) snubfin and b) humpback 

dolphins by time of day (2-3 hourly bins). Bar height represents densities of counts (number 

of dolphin groups seen divided by number of scans); bar compositions represent proportion 

time observed in various behaviours.  
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 Dolphins’ patterns of occurrence in relation to boats, capital dredging, maintenance 
dredging and rock dumping  

Boats 

Among snubfin dolphins, there were too sparse observations in 2024 to discern a 

pattern: with less than 3boats all snubfins were observed travelling, at 3 boats they were 

observed foraging (Fig. 16a). When pooling all snubfin observations across all survey years, 

no consistent pattern emerges (Fig. 17a). Overall, there may have been a slight decrease 

in the number of snubfin dolphins with increasing number of boats, and a decreasing 

tendency to forage.  

The presence and behavioural activity of humpback dolphins observed from Berth 11 

changed as the number of boats increased (Fig 16b). In 2024, humpback dolphin counts 

tended to increase with increasing number of boats, and they tended to increase their 

proportion of time travelling (although all behaviours recorded in 2024 were observed across 

all counts of boats). However, in 2023, an opposite trend was observed, whereby fewer 

humpbacks were observed with more boats present, and foraging decreased concomitantly. 

When considering all years of data pooled together (Fig.17b), no consistent pattern emerges 

in behavioural composition nor total counts. It is possible that foraging behavior diminished 

in response to increased boat activity, while traveling behavior became more prevalent. 
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a) 

 

b) 

Figure 16. Counts of a) snubfin and b) humpback dolphins groups observed and their 

behaviours, stratified by the number of boats present, for the 2024 survey-year. Bar height 

represents densities of counts (number of dolphin groups seen divided by number of scans).  



 

106 
 

 
 

a) 

 
b) 

Figure 17. Pooled observations (2019 to 2024 inclusive) of counts of a) snubfin and 

b) humpback dolphins groups observed and their behaviours, stratified by the number of 

boats present. Bar height represents densities of counts (number of dolphin groups seen 

divided by number of scans). 
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Dredging 

As in the 2023 analysis, we pooled all years and used the absence of dredging (of all 

types) as the null-model to calculate Bayesian p-values. 2024 was a post-construction 

survey-year, in which there were no additional observations of dredging. Therefore, all land-

based observations of snubfin and humpbacks in 2024 merely add to the presumed null-

distribution of occupancy (i.e., no capital or maintenance dredging present or active).  

For capital dredging, we further analysed the data based on whether the dredging 

was active (when dredging operations were ongoing) vs. inactive(when dredging vessel was 

present but not in operation), as well as present (dredging vessel is in the area regardless 

of active or inactive) vs. not present (no dredging vessel was in the area) (Table 13). 

Over 6 years of field study, there were a total of 21 scans in which maintenance 

dredging was present, 1327 scans in which capital dredging was present, and 858 scans in 

which capital dredging was present and active. 

The humpbacks had very high Bayesian p-values for all types of dredging (p ≥ 0.95) 

(Table 13). Therefore, their presence/absence patterns were in-line with the no-dredging 

null model, and it may even suggest a positive affinity. For snubfin dolphins, the p-values 

were high for maintenance dredging (0.99), but very low for capital dredging presence 

(0.000) and capital dredging activity (0.000), indicating that capital dredging resulted in 

snubfin counts that were very out-of-line with the no-dredging null-model. Therefore, 

maintenance dredging was not associated with noticeable changes in the presence or 

absence of snubfin dolphins around the port area, whereas capital dredging coincided with 

variations in their occurrence. 
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Table 13. Land-based observations of Australian snubfin and humpback dolphins during a) 

maintenance dredging with trailing suction hopper dredger (TSHD); b) presence of capital 

dredging with backhoe dredger (BHD) versus periods with no dredging (of all types); and c) 

active versus inactive/non-presence of capital dredging, across all survey years. 

a) 

Species 
Maintenance 

Dredging 
(TSHD) 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
no 5444 120 

0.99 
yes 21 2 

Humpback 
no 5444 136 

0.9 
yes 21 1 

b) 

Species 
Capital 

dredging 
(BHD) 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
no 5465 122 

0 
yes 1327 1 

Humpback 
no 5465 137 

1 
yes 1327 101 

c)  

Species 
Capital 

dredging 
(BHD) 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
not 

present/inactive 5934 122 
0 

active 858 1 

Humpback 
not 

present/inactive 5934 178 
1 

active 858 60 

 

* For the two types of dredging, the number of scans does not add up to the total number of scans, because 

of the treatments/sets. For presence and absence counts for capital dredging, we excluded from the "no 
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dredging" treatment both types of dredging (both maintenance and capital dredging), and likewise for the 

maintenance dredging. We excluded from the "no dredging" treatment both types of dredging (both 

maintenance and capital dredging). This was done to remove any confounding effect in the "no dredging" 

treatment where another type of dredging occurred. 

Rock-Dumping 

There were no additional incidences of rock dumping in 2024. All 401 scans in which 

rock dumping occurred happened in 2020. Therefore, our conclusions are the same as 

reported previously. 

The Bayesian p-value was very high for snubfins (>0.999), suggesting that the 

presence of snubfins was not out-of-line with the expectations of the non-rock dumping null 

model, and there may even have been a positive affinity (Table 14). The p-value was very 

low for humpback dolphins, given that exactly 0 humpbacks were encountered during 

dumping (Table 14). Therefore, the presence or absence of snubfin dolphins around the port 

area did not show a clear association with rock dumping, whereas patterns in humpback 

dolphin occurrence appeared to coincide with this activity.  

Piling Activities 

There was no additional piling activity in 2024. The additional non-piling scans add to 

the null-distribution. All 9 scans in which piling occurred were from 2022. There were no 

observed snubfin or humpback dolphins during any of the 9 piling scans. While this may 

seem dramatic, due to the few occurrences of piling, the lack of dolphins was actually in-line 

with the null-model expectations, such that the Bayesian p-values were high (0.72 – 0.844) 

(Table 15). It is important to recognize that with only 9 piling events, the statistical power to 

detect small to moderate effects is low. However, that does not invalidate the finding—

rather, it emphasizes that the absence of dolphins during piling is not inconsistent with the 
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null expectation. It does not prove there is no effect, but suggests the data do not provide 

evidence of an effect, given current sample size. 

Table 14. Land-based observations of snubfin and humpback dolphins during rock dumping 

and non-rock dumping construction activities across all survey-years (2019-2024). 

Species 
Rock-

Dumping 
Present 

Number of 
Scans 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
no 6390 103 

1 
yes 401 20 

Humpback 
no 6390 238 

0 
yes 401 0 

Table 15. Land-based observations of snubfin and humpback dolphins during piling and 

non-pilling activities across all survey years. 

Species Piling Active Number of 
Scans 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
no 6783 123 

0.84 
yes 9 0 

Humpback 
no 6783 238 0.72 

 yes 9 0 
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 GAM regression of dolphin presence/absence in relation to environmental predictors 

and anthropogenic disturbances (capital dredging, maintenance dredging rock dumping, 

and piling) 

The multi-model GAM exercise for the land-station data inference resulted in 8451 

different models with different combinations of covariates, the same as in the 2023 report. 

For snubfin and humpback dolphins, there was a lot of multi-model uncertainty, especially 

for snubfin dolphins. In other words, there were a lot of low probability models, including the 

top models. 

For snubfin dolphins, the top model had 1.7% of the AIC-weights, and included 

covariates: 

• glare 

• activity of capital dredging (BHD) (dredging vessel was present and 

active) 

• year as a categorical variable 

• spline (time-of-day x year) 

• spline (julian-day-of-year x year) 

Of the linear covariates of the best model, only glare was deemed statistically 

significant according to naive p-values. The non-model-averaged coefficients glare was 

positive, suggesting that increased glare was positively associated with occupancy by 

snubfin dolphins. 

For humpbacks, the top model had 24.0% of the AIC-weights. It included covariates:  

• BSS 

• counts of all boats (total boats) 
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• presence of capital dredging (BHD) (regardless if was active or not) 

• year as a categorical variable 

• spline (time-of-day x year) 

• spline (julian-day-of-year x year) 

All the linear covariates of the best model were deemed statistically significant 

according to naive p-values (i.e., non-model-averaged p-values). The non-model-averaged 

coefficients of boats and capital dredging were positive, suggesting that increased presence 

of boats and increased presence of capital dredging were positively associated with 

increased occupancy by humpbacks. 

Due to the high model uncertainty, our primary means of inference was primarily 

based on model-averaging, such as interpreting the posterior inclusions probabilities (Table 

16) to rank the importance of covariates, and the model-averaged coefficients and p-values 

(Table 17) to interpret effect magnitude and direction and statistical significance. 

For snubfin dolphins, all the temporal covariates had inclusion probabilities greater 

than 0.99 The environmental covariate with the largest inclusion probability was glare with 

0.88, activity of capital dredging with an inclusion probability of just 0.15, then counts of 

small boats with an inclusion probability of 0.145, then counts of fishing boats with an 

inclusion probability of 0.12, then recreational boats and medium-sized boats with an 

inclusion probability of 0.11, each. All other covariates had inclusion probabilities below 0.1.  

For humpback dolphins, the highest posterior probabilities (greater than 0.99, or 99% 

inclusion) were obtained by four covariates, including: all the temporal covariates (hour-of- 

day, Julian day-of-year, year-as-a-categorical variable), and the presence of capital 

dredging. The next largest component was BSS with an inclusion probability of 0.64, then 

counts of all boats (total boats) with an inclusion probability of 0.365, then recreational boats 
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with an inclusion probability of 0.25, then small boats with an inclusion probability of 0.22. 

All other covariates had inclusion probabilities below 0.1. 

Table 16. Model-averaged sum of AIC-weights (aka approximate posterior inclusion 

probabilities) for covariates predicting the presence/absence of dolphins at land-stations. 

Inclusion probabilities greater than 0.5 are shown in bold. 

Covariate Humpbacks Snubfins 
wind 0.04 0.05 
BSS 0.64 0.04 
swell 0.06 0.09 
visibility 0.07 0.09 
glare 0.05 0.88 
time-of-day/hour 1 1 
julian-day-of-year 1 1 
year as categorical variable 1 1 
boats small 0.22 0.15 
boats medium 0.05 0.11 
boats large 0.09 0.06 
boats fishing 0.05 0.12 
boats recreational 0.25 0.11 
boats total 0.37 0.12 
boats industrial 0.04 0.06 
capital dredging (BHD) 
presence 1 0.06 

capital dredging (BHD) active 0 0.15 
maintenance dredging (TSHD) 0 0.04 
rock dumping 0 0.06 
piling 0 0.04 
aggregate disturbance 0 0.05 
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Table 17 shows the estimate of standardised regression coefficients (mean-centred 

and scaled to unit-variance, i.e., 1 unit change in logit-probability of dolphin presence per 

unit of the coefficient). The coefficients were model-averaged over top models with highest 

posterior weights.  

For snubfin dolphins, many of the models suffered from singularities and infinities in 

the MLE variance-covariance matrix (such as the capital dredging and piling covariates), 

likely due to the paucity of snubfins presence during capital dredging activities. As remedy, 

we truncation the individual models’ coefficients to have an absolute logit-value of at most 

50, thereby stabilising the model-averaging process (because a single low-probability model 

can explode the model-averaged estimates if its coefficient is extreme). The only statistically 

significant model-averaged effect was due to glare, such that more glare was associated 

with higher odds of detecting snubfins. 

For humpback dolphins, there was only one (non-temporal) covariate that had a 

statistically significant model-averaged coefficient: capital dredging (BHD) presence. It had 

a high positive covariate, suggesting a positive association between the presence of capital 

dredging and occurrence of humpback dolphins. The next most-significant covariate was 

BSS with a p-value of 0.238, with a negative coefficient. All the other disturbance covariates 

had coefficients estimated to be exactly 0 because their posterior inclusion probabilities were 

approximately zero.  
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Table 17. Model-averaged and standardised regression effects from an ensemble of GAMs for predicting dolphin presence at land observation 
stations. 

Covariate Mean S.E. Lower 
95%CI 

Upper 
95%CI P-value Mean S.E. Lower 95%CI Upper 

95%CI P-value 

wind 0 0.03 0 0 0.96 0 0.03 -0.04 0 0.91 
BSS -0.19 0.17 -0.47 0 0.24 -0.01 0.04 -0.06 0 0.89 
swell -0.01 0.05 -0.2 0 0.83 0.01 0.04 0 0.12 0.89 
visibility 690.84 Inf -Inf Inf 1 -0.01 0.03 -0.1 0 0.87 
glare 0.01 0.04 0 0.14 0.84 0.25 0.11 0 0.44 0.02 
boats small 0.03 0.07 0 0.24 0.65 0.02 0.05 0 0.19 0.76 
boats medium 0 0.02 0 0.05 0.9 0.01 0.04 0 0.13 0.84 
boats large 0.01 0.05 0 0.19 0.81 0 0.03 -0.02 0 0.97 
boats fishing 0 0.02 -0.06 0 0.89 0.01 0.05 0 0.17 0.79 
boats recreational 0.04 0.08 0 0.24 0.61 0.01 0.04 0 0.14 0.83 
boats total 0.07 0.1 0 0.3 0.5 0.01 0.05 0 0.19 0.8 
boats industrial 0 0.03 0 0 0.99 0.01 0.05 0 0.1 0.92 
capital dredging 
presence 0.76 0.12 0.54 1 0 0.08 9.25 -25 28.06 0.99 

capital dredging 
active* 0 0 0 0 - -0.08 14.41 -40.99 40.97 1 

maintenance 
dredging* 0 0 0 0 - 0 0.01 -0.01 0 0.94 

rock dumping 0 0 0 0 - 0.01 0.05 0 0.18 0.82 
piling* 0 0 0 0 - -0.08 6.73 0 0 0.99 
aggregate disturbance 0 0 0 0 - 0.01 0.05 0 0.2 0.85 

* truncated effects on logit scale to a maximum absolute logit of -50 or 50.
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Regarding interannual differences at the land-station, Table 18 shows the model-

averaged estimated per-year effect (on the logit scale). These per-year-effects, do not 

include the positive and negative contributions of covariates that may systematically vary by 

year (such as certain disturbances), meaning that the presence or absence of such affects 

can adjust the per-year aggregate effects. For snubfin dolphins, the only years with reliable 

model-averaged per-year effects were 2019 (-3.16, SE: 0.48; 95%CI:-4.09 - -2.21), 2021 (-

4.34, SE: 0.26; 95%CI: -4.85 - -3.83), and 2024 (-2.24; SE: 0.75; 95%CI: -3.73 - -0.79), 

whereas other years, like 2023, had little or no observations of snubfins. 2024 had a much 

higher estimate per-year effect, with strongly non-overlapping 95%CI from 2021. This 

suggests that the snubfins occupancy was as great or greater than in previous years, 

including the baseline year. 

 

For humpback dolphins, the model-averaged point-wise estimates showed a lot of 

interannual variability, such that high-years were followed by low-years, etc. The point-wise 

estimates were highest for 2024 (-1.246), followed by 2021 (-3.88), then the pre-construction 

baseline of 2019 (-3.94), then 2020 (-5.02), then 2023 (-5.521); finally, 2022 had the lowest 

point-wise coefficient for humpbacks, with a value of -5.693. However, almost all of the 

model-averaged 95%CIs were overlapping, with the exception of 2023 (-6.498, -4.652) 

versus 2019 (-4.448, -3.435) and 2021 (-4.27, -3.496), suggesting that 2023 was 

systematically lower than others. Notice the very large 95%CI for 2024 (-1.246, SE: 7.244; 

95%CI:-15.88 – 12.959), suggesting its ranking to be less confident; it was also the year 

with least number of scans. 
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Table18. Model-averaged time-series of per-year-effects on humpback and snubfin 

dolphin probability of occupancy (on the logit-scale) around the Port of Townsville. 

 Snubfin Humpback 

Year Mean S.E. Lower 
95%CI 

Upper 
95%CI Mean S.E. Lower 

95%CI 
Upper 
95%CI 

2019 -3.16 0.48 -4.09 -2.21 -3.94 0.26 -4.45 -3.44 
2020 -17.31 12.44 -41.09 6.18 -5.02 0.41 -5.77 -4.2 
2021 -4.34 0.26 -4.85 -3.83 -3.88 0.2 -4.27 -3.5 
2022 -7.05 17.69 -41.54 44.83 -5.69 0.88 -7.46 -3.96 
2023 -Inf Inf NA NA -5.52 0.48 -6.5 -4.65 
2024 -2.24 0.75 -3.73 -0.79 -1.25 7.24 -15.88 12.96 
 
  



 

118 
 

4. Discussion and conclusions 

It is important to emphasize that the observed correlations between dolphin 

occurrence and port construction activities do not necessarily indicate direct causation. The 

abundance and distribution of dolphins in Cleveland and Halifax Bays, as well as their 

presence near the port area, may also be influenced by various extrinsic factors, such as 

climatic variability, competition with other species, or dispersal limitations, as well as intrinsic 

factors like dietary preferences and habitat specialization. These variables, which were not 

directly assessed in this study, could independently or interactively affect the presence of 

snubfin and humpback dolphins in the monitored regions. Nonetheless, the marked 

interspecific differences observed in population dynamics, spatial distribution, and 

occurrence patterns over the monitoring period raises the possibility of a link between 

anthropogenic disturbances and shifts in snubfin dolphin abundance, behaviour, and habitat 

use. For snubfin dolphins, these changes—including a decline in abundance and reduced 

use of Cleveland Bay in 2022 and 2023, followed by a rebound in 2024—closely align with 

the timing of CU construction activities and its subsequent cessation.  

4.1 Survey effort 

The 2024 (post-construction) vessel surveys of inshore dolphins for the Port of 

Townsville proceeded well. We were able to carry out nine full surveys of Cleveland and 

Halifax Bay between June-July.  

4.2 Estimates of abundance, survival, emigration, and movement 

Snubfin dolphins 

Due to the limited number of encounters and thus individual captures of snubfin 

dolphins in Cleveland Bay in 2022 (n =1) and 2023 (n =10) adjustments to the Multistate 
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Closed Robust Design model (as mentioned in results section) had to be made to allow 

estimation of population parameters. Therefore, the abundance estimates for snubfin 

dolphins in Cleveland Bay for 2022 and 2023 should be interpreted with caution, as they are 

likely overestimated due to the limited number of captures available in both years (see 

results). The abundance estimates of snubfin dolphins in Cleveland Bay during the first three 

survey years (2019–2021) indicated a relatively stable population of 30–40 individuals. This 

was followed by a substantial decline in 2022 and 2023, and a recovery to pre-2022 numbers 

in 2024. Despite data limitations in 2022 and 2023, our results suggest that the sharp decline 

in snubfin dolphins in Cleveland Bay was primarily due to an increase in their movement to 

Halifax Bay before 2022. In 2024, the return rate from Halifax to Cleveland Bay has since 

rebounded to levels observed in 2019–2021. The high estimated biological survival rate 

(0.95) of snubfin dolphins further supports the conclusion that the observed decline was not 

due to mortality. 

The return of snubfin dolphins to numbers similar to those observed in 2019, the 

baseline year, suggests that the population changes recorded in 2022 and 2023 may have 

been temporary changes rather than indicative of long-term population declines. This 

recovery could imply that the snubfin population is resilient to certain stressors, such as 

habitat disturbances or resource availability shifts, provided these pressures are mitigated 

or removed over time. The observed trends underscore the importance of minimizing 

environmental and anthropogenic stressors in important habitats and maintaining 

connectivity between adjacent areas like Cleveland and Halifax Bays, which may provide 

refuge and support population resilience. 

The temporary nature of the observed changes may reflect short-term behavioral responses, 

such as displacement to alternative habitats, rather than lasting demographic impacts like 

reduced reproduction or survival rates. For instance, snubfins may have shifted to Halifax 
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Bay during periods that coincided with peak construction activities or other environmental 

changes in Cleveland Bay, with their subsequent return aligning with reduced disturbance 

levels or improved habitat conditions. While the data do not allow for direct attribution, this 

pattern aligns with a potential behavioral response to changing local conditions. Comparable 

temporal associations have been documented in Australian humpback dolphins in Port 

Curtis-Gladstone, within the southern Great Barrier Reef region, where a decline in female 

abundance coincided with the onset of port development, followed by a return to previous 

levels after construction concluded (Cagnazzi et al. 2020). While these patterns may seem 

encouraging, they should not dismiss the potential cumulative impacts of repeated or 

prolonged disturbances, which could exceed the population's adaptive capacity. Long-term 

monitoring is critical to understanding whether this recovery represents a full return to 

ecological stability or if the population remains vulnerable to recurring or intensifying 

pressures.  

As indicated in previous report, although our research does not prove what caused 

the decrease in snubfin dolphin abundance in Cleveland Bay in 2022-2023 in comparison to 

previous years, it suggests disturbance from port construction activities as a potential 

explanation. The decline in snubfin dolphin abundance in Cleveland Bay during 2022 and 

2023 may result from various extrinsic (e.g., climate, competition, dispersal) and intrinsic 

factors (e.g., prey abundance, habitat specialization) not accounted for in this study and for 

which there is no data availabe. However, the decrease in abundance in 2022 and 2023 and 

increased movement of snubfins from Cleveland to Halifax Bay coincided with capital 

dredging and piling activities associated with CU project; and followed the completion of the 

rock wall construction for the 62-ha port reclamation area at the eastern end of the Port in 

2021. Such activities have been associated with declines in dolphin abundance in other 

areas (Jefferson et al. 2009, Dungan et al. 2011, Brooks and Pollock 2015, Pirotta et al. 

2013, Cagnazzi et al. 2020). For example, significant declines in Australian humpback 
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dolphins were observed in Port Curtis-Gladstone after extensive dredging and land 

reclamation (Cagnazzi et al. 2020). The number of humpback dolphins present in Darwin 

Harbour showed a steady decline during periods coinciding with pile driving associated with 

the Ichthys LNG Project (Brooks and Pollock 2015). Dredging caused common bottlenose 

dolphins (Tursiops truncatus), to spend less time in Aberdeen harbour (Scotland), despite 

high baseline levels of disturbance and the importance of the area as a foraging patch 

(Pirotta et al. 2013)  

In contrast to Cleveland Bay, snubfin dolphin numbers increased significantly in 

Halifax Bay during 2022, 2023 and 2024 due to movements from Cleveland Bay and 

immigration from outside the study area. Many snubfin dolphins identified in Halifax Bay from 

2022 onwards were likely new immigrants, as indicated by the relatively large number of 

individuals first captured in the bay during this period. This suggests that, in addition to the 

movement of animals from Cleveland Bay to Halifax Bay, there may have been immigration 

into the area over the past three years, reflecting connectivity between local populations in 

Cleveland Bay, Halifax Bay, and adjacent regions. Halifax Bay may have offered comparable 

or improved habitat quality relative to Cleveland Bay during the period of observed change, 

which coincided with capital dredging and piling activities associated with CU project; and 

followed the completion of the rock wall construction for the 62-ha port reclamation area at 

the eastern end of the Port in 2021. We acknowledge that this temporal alignment does not 

demonstrate that the CU Project caused the increase, but given the overlap in timing, it is 

appropriate to note the coincidence as part of the discussion of potential contributing factors.  

If prey availability, water quality, or acoustic conditions were more favourable, 

dolphins may have been attracted to Halifax Bay, not only from Cleveland Bay but also from 

adjacent coastal regions (e.g., further north), particularly if those areas experienced 

environmental disturbances such as cyclones, habitat degradation, or shifts in prey 
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distribution that triggered broader redistribution. It is also possible that the observed 

movements of snubfin dolphins from Cleveland Bay to Halifax Bay facilitated additional 

immigration from outside the study area. Social attraction, conspecific cues, and perceived 

habitat suitability may have drawn individuals from neighbouring regions, contributing to the 

significant increase in dolphin abundance in Halifax Bay between 2022 and 2024. This 

connectivity suggests demographic and genetic links between subpopulations in the region, 

consistent with similar immigration events observed in Bynoe Harbor, Northern Territory 

(Brooks et al. 2017). 

Humpback dolphins 

Abundance estimates over the past six years indicate an increasing trend in 

humpback dolphin numbers in both Cleveland and Halifax Bays during the last three years 

(2022–2024), with higher abundance consistently observed in Halifax Bay compared to 

Cleveland Bay since monitoring began in 2019. The increasing abundance of humpback 

dolphins in Cleveland and Halifax Bays, particularly the consistently higher numbers in 

Halifax Bay, reflects the ecological significance of this region for the Townsville population. 

Halifax Bay's larger fraction of the population could be attributed to its ecological 

characteristics, such as prey availability, habitat quality, or lower levels of anthropogenic 

disturbance compared to Cleveland Bay. Such differences in habitat suitability underscore 

the critical role of spatial heterogeneity in supporting local dolphin populations (Parra 2006). 

Several ecological and behavioural mechanisms may explain the increasing trend in 

abundance of humpback dolphins in Cleveland Bay in contrast to snubfin dolphins. First, 

humpback dolphins may possess behavioural flexibility that allows them to exploit 

anthropogenically altered environments more effectively than other species. For instance, 

construction activities and modified coastal features may lead to localized prey aggregation, 

such as schooling fish or invertebrates attracted to increased turbidity or nutrient runoff, 
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enhancing foraging opportunities for these opportunistic predators. Second, built structures 

like seawalls, jetties, and pilings can serve as artificial reefs, attracting prey species and 

creating foraging hotspots. Humpback dolphins have been observed using such structures 

to herd fish or concentrate prey, effectively enhancing their feeding efficiency in areas where 

natural features may have been diminished. These modified habitats may inadvertently 

benefit dolphins by concentrating prey in accessible zones. Third, the observed increase 

may also reflect a competitive release following the decline of sympatric snubfin dolphins. 

As snubfin dolphins vacate or reduce their use of key habitats in Cleveland Bay, resources 

such as prey and space may become more readily available to humpback dolphins, allowing 

them to expand their range and increase their residency or site fidelity in the area. In addition, 

humpback dolphins may exhibit stronger tolerance or habituation to anthropogenic noise 

and activity compared to snubfin dolphins, which are known to be more sensitive to 

disturbance. This differential tolerance could facilitate the displacement of snubfins and the 

subsequent occupation of disturbed areas by humpbacks. 

The high biological survival rate estimated for Cleveland and Halifax Bays (0.97 p.a.) 

aligns with values reported for other healthy dolphin populations (Cenci et al. 2011, 

McDonald et al. 2017, Jaakkola and Willis 2019), suggesting that humpback dolphins in the 

study area are not experiencing severe mortality pressures from environmental variability or 

anthropogenic impacts. Together with the increasing abundance, this demographic 

robustness suggests that despite facing potential threats—such as port development, 

increased human activities, or environmental changes—the dolphins are adapting well, 

showing no immediate signs of population-level declines or elevated mortality. However, this 

does not preclude the need for continued monitoring to ensure the population remains 

resilient in the face of ongoing or increasing pressures. 
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The observed movement rates between Cleveland and Halifax Bays (0.21 p.a.) and 

the substantial permanent emigration rate (0.17 p.a.) highlight the dynamic nature of 

humpback dolphin distribution in this region. The high connectivity between these bays and 

with populations beyond the study area supports genetic assessments indicating that 

humpback dolphins in the Townsville region form part of a broader metapopulation structure 

(Parra et al. 2018). Such connectivity facilitates genetic exchange, enhances population 

viability, and allows dolphins to exploit resources across a mosaic of habitats. 

Halifax Bay's higher temporary emigration and return rates compared to Cleveland 

Bay provide further evidence of its role as a hub within this interconnected network. The 

frequent movement of individuals in and out of Halifax Bay suggests linkages with nearby 

populations, possibly driven by seasonal shifts in prey distribution or habitat conditions. This 

level of connectivity underscores the importance of Halifax Bay in sustaining regional 

population dynamics. 

4.3 Spatial distribution 

The spatial distribution patterns of humpback dolphins in Cleveland Bay and Halifax 

Bay have exhibited consistency during the past six years of monitoring. The spatial 

distribution of snubfin dolphins showed consistent use of similar areas with some significant 

changes in 2022-2023, and a return to pre-2022 space use patterns in 2024.  

Overall, both humpback and snubfin dolphins seem to favour approximately three 

core areas: i) to the west, around and to the east of the Port of Townsville in Cleveland Bay; 

and ii) the central coastal waters between Cape Pallarenda/Bohle River and Toolakea, and 

iii) the northern inshore areas off and west of Toomulla in Halifax Bay. Humpback dolphins 

also seem to inhabit some offshore areas in Halifax Bay, and occasionally occupy nearshore 

areas in the northeast of Magnetic Island.  
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The consistency in the spatial distribution patterns of humpback dolphins in Cleveland 

Bay and Halifax Bay over six years reflects their strong fidelity to specific habitats, a well-

documented trait for this species (Parra 2006, Parra et al. 2006a, Meager et al. 2018). Such 

spatial consistency suggests that these bays provide essential ecological resources within 

their home range, including foraging opportunities, shelter, and suitable conditions for social 

interactions and reproduction. 

The spatial distribution patterns of snubfin dolphins, characterized by consistent use 

of similar areas but with significant shifts in 2022–2023 and a return to pre-2022 patterns in 

2024, provide key insights into their ecological flexibility and responses to environmental 

and anthropogenic changes. The observed shifts in 2022–2023 coincide with changes in 

abundance and movement patterns, as indicated by capture-recapture modelling. The 

increased abundance of snubfin dolphins in Halifax Bay and higher movement rates from 

Cleveland Bay to Halifax Bay before 2022 suggest a redistribution of individuals within the 

region. Marine dredging activities can result in both temporary and long-term alterations of 

habitats, impacting the overall ecological dynamics of marine ecosystems (see reviews in 

Erftemeijer et al. 2012, Wenger et al. 2017, Borland et al. 2022, Eke et al. 2023). These 

impacts stem from various mechanisms, including physical alterations of the seabed, 

introduction of noise pollution, and changes in species composition. Pile driving, a common 

component of marine construction, generates significant underwater noise that has the 

potential to produce physiological and/or behavioural effects on fish (Popper et al. 2013, 

Casper et al. 2016) and marine mammals (David 2006, Brandt et al. 2011, Kastelein et al. 

2013, Dahl et al. 2014). Such disturbance can elicit both short-term responses, such as 

temporary avoidance, altered vocal behaviour, or changes in dive patterns, and longer-term 

effects when exposure is repeated, prolonged, or intense enough to influence habitat use, 

movement patterns, or energetic budgets (Brandt et al. 2012, Kastelein et al. 2013, Graham 

et al. 2017, Clement et al. 2025). Both dredging and pile driving can lead to behavioral 
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changes in marine mammals, including avoidance of affected areas (Pirotta et al. 2013, 

Graham et al. 2017, Leunissen et al. 2019, Fang et al. 2023).The decrease in the occurrence 

and abundance of snubfin dolphins in Cleveland Bay in 2022 and 2023 could have been 

driven by changes in habitat conditions, prey availability, or disturbance levels in Cleveland 

Bay, possibly linked to construction activities for the CU project, including dredging and 

piling. 

The return of snubfin dolphins to pre-2022 space use patterns in 2024, along with 

movement rates comparable to those observed in 2019–2021, suggest that the stressor(s) 

that may have contributed to their earlier decline and displacement in Cleveland Bay are no 

longer present and/or ecological conditions (e.g., prey availability, habitat quality) may have 

improved. This temporal pattern coincided with the post-construction phase of the CU 

project, and suggests that reduced disturbance levels and/or potential habitat improvements 

may have supported the reoccupation of previously used areas. 

Interestingly, the overall condition of seagrass meadows in Cleveland Bay, used as 

a proxy for habitat quality and a feature associated with snubfin dolphin habitat preferences 

(Parra 2006), was reported as satisfactory in 2019, good in 2020, 2021, and 2022, 

satisfactory in 2023, and poor in 2024 (McKenna et al. 2020, 2021, 2022, 2023, 2024, 2025). 

The observed decline in most seagrass meadows in Cleveland Bay in recent years (2023-

2024) has been attributed to a combination of simultaneous and successive system-wide 

meteorological influences (i.e. flooding, above average rainfall and extreme temperatures) 

(McKenna et al. 2024, 2025). The decline in snubfin dolphins during 2022–2023, when 

seagrass condition was good to satisfactory, and their return in 2024, when seagrass was 

poor, highlight an opposing trend between seagrass habitat quality and dolphin 

abundance/presence, suggesting that these shifts are unlikely to be explained by seagrass 

condition alone. Instead, it seems more plausible that their decline in 2022–2023 and 



 

127 
 

subsequent return in 2024 were related to the presence and later cessation of stressors and 

disturbances potentially associated with CU construction activities (e.g., capital dredging 

and piling). While causation cannot be confirmed, these findings are consistent with the 

hypothesis that snubfin dolphins are capable of responding to changes in local 

environmental conditions and may re-establish use of preferred habitats when pressures 

diminish and/or ecological conditions improve.  

Regarding their spatial distribution across both Cleveland and Halifax bays in relation 

to known disturbances (boats, dredging, rock-dumping, piling ), neither species seems to 

have a convincing statistic relationship to such covariates. Like previous years’ analyses, 

the high allocation of RVI to the unexplained spatial processes (i.e., spatial splines) for both 

species suggests that a lot of the spatial variation was not captured by known environmental 

or human related covariates, whether linear or not linear.  

The CV likelihood ratio tests however, provided substantial support for the full model 

including disturbance covariates for both species, providing evidence that the disturbances 

had some effect. Based on RVI values and covariate interaction plots, maintenance 

dredging seems to have a small effect on humpback dolphin spatial distribution (i.e. density 

of species decreases as distance to maintenance dredging increases). The temporary 

release of organic nutrients during dredging, as documented in previous studies (see review 

in Todd et al. 2015), has the potential to enhance local prey abundance. Enhanced benthic 

diversity and biomass near dredged channels could provide a temporary boost in foraging 

opportunities for humpback dolphins, and thus explain their affinity for dredge channels and 

proximity to maintenance dredging.  

For snubfin dolphins, RVI values and covariate interaction plots of their spatial 

distribution over the whole study area (including Cleveland and Halifax Bays) indicated a 

small effect of distance to rock-dumping, with snubfin dolphin density decreasing slightly 
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with increasing distance from rock-dumping locations. Snubfin dolphins in Cleveland Bay 

have been shown to exhibit high levels of site fidelity, with individuals frequently returning to 

the same locations across multiple years including areas around the Port of Townville 

associated with anthropogenic structures such as pier pilings, channels and rock walls. 

(Parra et al. 2006a). This pattern was consistent with vessel- and land-based observations 

in the present study, except in 2022 and 2023, when snubfin dolphins were virtually absent 

from Cleveland Bay and the waters around the Port. This is likely a result of their need for 

predictable access to resources such as food, and their reliance on specific habitat features 

(e.g., shallow coastal waters with seagrass and mangroves) for foraging and social activities. 

Additionally, coastal structures such as seawalls, jetties, and pier pilings can support diverse 

marine life and provide valuable habitat for fish (Bulleri 2005, Dugan et al. 2011, Brandl et 

al. 2017). These features may also aid dolphins in herding prey or benefit from prey 

aggregations (Moreno and Mathews 2018, Methion and Díaz López 2019, Mills et al. 2024, 

Haughey et al. 2025). Port areas and shipping channels have been linked to dolphin 

distribution, likely due to high prey availability from nutrient mixing and proximity to 

productive habitats and fishing grounds (Maricato et al. 2022, Ledwidge et al. 2024, Mills et 

al. 2024) Given these habitat features the strong site fidelity of snubfin dolphins , it is 

plausible thatthey may not be highly disturbed by rock dumping activities, especially if these 

activities do not drastically alter the core features of their foraging habitats.  

4.4 Patterns of attendance to the port area 

Land-based observations from Berth 11 within the Port of Townsville were feasible 

throughout the day in 2024, given good weather conditions. However, our sampling was 

limited to 12 days in June due to the closure of Berth 11 for maintenance work for the rest 

of our sampling season. Despite this limitation, humpback dolphins were frequently 

observed from the land-based station, and snubfin dolphins were seen on five days in 2024. 
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The frequent observations of humpback dolphins from the land-based station reflect 

the ongoing use of the area by this species, which has been consistently observed in years 

of monitoring and aligns with patterns of abundance and space use identified through vessel 

surveys in Cleveland Bay. The sighting of snubfin dolphins on five separate days in 2024 is 

notable, especially considering the absence of sightings in 2023 and the minimal presence 

in 2022, when they were observed only once. This suggests a potential return to the area, 

which may be indicative of a recovery in the species’ use of the bay. The return of snubfin 

dolphins in 2024 could also signal that disturbances or changes in the environment that 

caused their displacement in 2022 and 2023 were temporary in nature.  

The quantitative assessment of differences in dolphin occurrence between 2024 and 

all previous years indicated that the patterns of occurrence of humpback dolphins around 

the port area in 2024 met or exceeded expectations based on prior years. For snubfin 

dolphins, the 2024 land-based surveys showed that snubfin dolphins patterns of occurrence 

around the port were higher in 2019-2020, declined in 2022-2023, and returned to 2021-

levels in 2024. These patterns agree with sighting patterns reported during vessel-based 

surveys, abundance estimates and spatial distribution patterns. 

Analysis of dolphin presence revealed interspecific differences in association with 

construction activities. Snubfin dolphin sightings decreased during capital dredging, while 

humpback dolphin presence showed a similar decline during rock dumping. In contrast, 

humpback dolphins displayed a positive association with capital and maintenance dredging, 

and snubfin dolphins with rock dumping. The observed interspecific differences highlights 

that the response to these pressures differ between species and may depend on differences 

in behavioral plasticity and resilience (Brakes and Dall 2016). 

The decline in snubfin dolphin sightings around the port during capital dredging 

activities suggests that this species may be more sensitive to disturbances associated with 
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sediment suspension, noise, or habitat disruption. While the observed pattern does not 

confirm a causal relationship, it points to a potential link between these construction-related 

activities and changes in dolphin occurrence. In contrast, humpback dolphins were more 

frequently observed during construction and maintenance dredging, potentially indicating an 

ability to exploit the altered environment, perhaps through increased foraging opportunities 

associated with prey aggregation near disturbed areas.  

Even when causation cannot be firmly established, applying the precautionary 

principle is appropriate when dealing with vulnerable species like snubfin dolphins. This 

principle supports the implementation of proactive mitigation measures, such as noise 

abatement, temporal-spatial restrictions on capital dredging to avoid time and areas of core 

dolphin activity, and habitat-sensitive planning, which may help reduce potential impacts 

even when scientific certainty about the specific drivers of observed changes is lacking. 
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