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which it is based is determined to be inaccurate or incomplete. The results of work carried
out by others may have been used in the preparation of this report. These results have been
used in good faith, and we are not responsible for their accuracy. The information herein is
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Executive Summary

This report presents the results of the Inshore Dolphin Monitoring Program (IDMP)
for the Port of Townsville Limited (POTL) Channel Upgrade Project (CU Project). The data
collected in 2024 during boat and land-based surveys were summarised and compared to
previous years (2019-2023). The study investigated any changes in coastal dolphin
abundance and distribution beyond natural spatial and temporal variations since 2019.
Monitoring of Australian snubfin and humpback dolphins spanned the pre-construction
(2019), construction (2020-2023), and post-construction (2024) phases of the CU Project.

Surveys were conducted annually during June—July, beginning in June 2019.

As in previous years, in 2024 the IDMP methodology involved boat-based photo-
identification surveys of dolphins in Cleveland and Halifax Bays and visual land-based
surveys of dolphins from Berth 11 within the Port of Townsville in Cleveland Bay. Data
analysis of dolphin sighting data collected during boat surveys involved capture-recapture
and species distribution modelling methods to assess differences in population
demographics and spatial patterns across survey years (2019-2024). Land-based survey
data was analysed using Bayesian p-values and Generalized Additive Models (GAMSs) to
assess overall differences in dolphin occurrence across all six years (2019-2024) in relation
to anthropogenic activities associated with the CU project in Cleveland Bay and that
coincided with the dolphin monitoring, including rock dumping (associated with rock wall
construction in 2020), capital dredging (i.e., dredging carried out by a backhoe dredger in
2022 and 2023), and pile driving (2022). We also assessed the dolphins’ patterns of
occurrence in relation maintenance dredging (i.e., routine dredging carried out by a trailing
suction hopper dredger every year to remove material that has drifted into the channel over

time and limits the access of ships) and vessel traffic not associated with CU Project .



Three vessels undertook simultaneous, predetermined line-transect surveys over 18 days
between June 1 and July 15, 2024, covering 1596.4 km in Cleveland Bay and 1457.5 km in
Halifax Bay. We observed a total of 35 groups of snubfin dolphins (9 in Cleveland Bay and
26 in Halifax Bay), 61 groups of humpback dolphins (28 in Cleveland Bay and 33 in Halifax
Bay) and 16 groups of bottlenose dolphins (6 in Cleveland Bay and 10 in Halifax Bay).
Twenty-five individual snubfin and 49 humpback dolphins were photo-identified in Cleveland
Bay, and 52 snubfin and 84 humpback dolphins were photo-identified in Halifax Bay in 2024.
At the same time, we completed a total of 12 days of visual survey scans from the land-
based observation point on Berth 11 between 4 and 18 of June. Humpback dolphins were
observed on 11 days and snubfins on 5 days of the 12 survey-days. Bottlenose dolphins

were not seen on any day.

The total estimated abundance of snubfin dolphins in Cleveland Bay in 2024 was 33
(SE = 10.38, 95% CI = 18-61) and 60 (SE = 3.87, 95% Cl = 52-68) in Halifax Bay. The
abundance of snubfin dolphins in Cleveland Bay in 2024 marks a recovery to pre-2022 levels
(31 in 2019, 42 in 2020, and 34 in 2021) after declines in 2022 (14*) and 2023 (27*). The
number of snubfin dolphins in Halifax Bay have been higher than those in Cleveland Bay
over the last three years with 111 in 2022, 73 in 2023, and 60 in 2024. The movement rate
from Cleveland Bay to Halifax Bay was 0.41 (i.e. an estimated 41% the dolphins moved from
Cleveland Bay to Halifax Bay) between 2023 and 2024, consistent with 2021-2022,
indicating continued high emigration from Cleveland Bay to Halifax Bay through 2024.
Movement from Halifax Bay to Cleveland Bay between 2023 and 2024 was 0.27 indicating
a relatively high rate of exchange (i.e. an estimated 27% of dolphins moved from Halifax
Bay to Cleveland Bay), comparable to the levels observed between 2019 and 2021.The

number of humpback dolphins present in Cleveland Bay and Halifax Bay in 2024 was 68

* The estimates for Cleveland Bay in 2022 and 2023 are considered unreliable and are likely to be too overestimated (see results
section of report).



(SE =7.95, 95% CI = 54-85) and 122 (SE = 11.80, 95% CI = 101-148), respectively. As in
previous years, there were more humpback dolphins present in Halifax than in Cleveland
Bay in 2024. Humpback dolphin numbers in Cleveland and Halifax Bays have increased
over the past three years compared to the first three years of monitoring. In Cleveland Bay,
numbers increased from 20 in 2019 to 68 in 2024, while in Halifax Bay they rose from 66 to
122 over the same period. .Between 2019 and 2024, the average annual movement rate
between Cleveland and Halifax Bays was approximately equal in both directions, at 0.21,
indicating a relatively high level of exchange, with an estimated 21% of dolphins moving
between the two bays each year. Species distribution models of the spatial occurrence and
relative density of snubfin dolphins reflect the abundance patterns observed across the
years in the bays. The 2024 spatial occurrence and relative density of snubfin dolphins show
a recovery from the low occupancy and density of 2022—2023 in Cleveland Bay, resembling
2019-2021 patterns with higher concentrations near the southwestern nearshore of
Cleveland Bay around the Port of Townsville. The spatial predictions for snubfin dolphins in
Halifax Bay are in line with predictions from previous years, showing high-occupancy and
density around and north of Toomulla beach and between Toolakea beach and Cape
Pallarenda. For humpback dolphins, the spatial occurrence and relative density predictions
from the 2024 model continue to show high occupancy and density to the north and to the
east of Port of Townsville, along the shore of Cleveland Bay, as well as a large expanse of
high-occupancy and density between Toomula beach and Cape Pallarenda (including both

inshore and offshore waters) in Halifax Bay.

Generalised likelihood ratio tests supported the full model that included disturbance
effects for both snubfin and humpback dolphins. For humpback dolphins, the relative
variable importance analysis indicated maintenance dredging as the most impactful

disturbance, with a small decrease in density of species as distance to maintenance



dredging increases. For snubfin dolphins, the relative variable importance analysis indicated
rock-dumping as key disturbance, with the species density decreasing as distance to rock-

dumping increased.

The quantitative assessment of differences in dolphin patterns of attendance to the
port area between 2024 and all previous years indicated that the number of encounters of
humpback dolphins were in line (or greater) than the expectations of previous years (all
Bayesian p-values were close to 1.0). For snubfin dolphins, Bayesian p-values indicated
that the number of encounters around the port was higher in the earlier years (2019-2020)
compared to 2024. The number of encounters in 2021 was similar to those in 2024, while
the 2024 encounters were comparable to—or higher than—those recorded in 2022 and
2023, with all Bayesian p-values close to 1.0. Analysis of land-based observations of dolphin
presence with respect to disturbances around the port revealed that humpback dolphin
presence was unaffected by capital dredging, maintenance dredging, or piling but decreased
during active rock-dumping. Snubfin dolphin occurrence presence was unaffected by
maintenance dredging and piling, increased during rock dumping; but decreased when
capital dredging was present (dredging vessel is at the site, regardless of whether it is
actively operating) and/or active (refers to a period when dredging operations were actively

occurring-mechanical removal of sediments).

Overall, monitoring over the past six years reveals a clear increase in humpback
dolphin abundance in both Cleveland and Halifax Bays, with consistently higher numbers
observed in Halifax Bay. This trend highlights the ecological importance of the region for the
Townsville population, and is possibly influenced by factors such as habitat quality, prey
availability, and lower anthropogenic disturbance in Halifax Bay. In Cleveland Bay, the
increasing trend in humpback dolphin numbers may reflect their capacity to exploit altered

environments, including potential prey aggregation around man-made structures, and may



also represent a form of competitive release following the decline of sympatric snubfin
dolphins.. The potential ability of humpback dolphins to persist under both favourable natural
conditions (as in Halifax Bay) and in more modified habitats (as in Cleveland Bay)
underscores the species’ ecological plasticity and highlights the importance of spatial and

species-specific responses to environmental change in shaping local dolphin populations.

In contrast, the occurrence and abundance of snubfin dolphins in Cleveland Bay
decreased in 2022 and 2023, coinciding with CU capital dredging and piling activities, but
appeared to return to pre-construction levels in 2024 after construction activities ceased.
The return of snubfin dolphins to numbers similar to those observed in 2019, the baseline
year, suggests that the population declines recorded in 2022 and 2023 may have been
temporary rather than indicative of long-term population declines. This recovery could imply
that the snubfin population is resilient to certain natural and anthropogenic stressors,
provided these pressures are mitigated or removed over time. The observed trends
underscore the importance of minimizing anthropogenic disturbances in critical habitats and
maintaining connectivity between adjacent areas like Cleveland and Halifax Bays, which

provide refuge and support population resilience.

While our findings reveal correlations between dolphin occurrence patterns and the
timeline of port construction activities, these associations do not imply direct causation. The
observed decline in snubfin dolphin abundance and their reduced presence around the port
area in 2022 and 2023 may reflect the influence of various unmeasured factors, including
extrinsic drivers such as climatic variability, interspecific interactions, and dispersal
limitations, as well as intrinsic factors like prey availability, dietary preferences, and habitat
specialization. Furthermore, delayed responses to environmental and anthropogenic
pressures are common among marine mammals, suggesting that current patterns could

result from cumulative or lagged impacts of earlier disturbances—such as the 2021



completion of the rock wall for the 62-ha port reclamation area. Despite these uncertainties,
the timing of capital dredging and piling activities coincided with species-specific changes,
particularly in snubfin dolphins, indicating a potential ecological link. In light of these
correlations and the inherent uncertainty surrounding their drivers, applying the
precautionary approach to species management is essential. This proactive strategy
prioritizes the prevention of potential harm to species and their habitats by advocating for

protective measures even when causal relationships are not definitively established.

Continued monitoring into the future is essential to assess whether the increased
presence and abundance of snubfin dolphins in Cleveland Bay in 2024, relative to the 2022
and 2023 period and in comparison to pre-construction conditions observed in 2019,
represents the beginning of a positive trend or simply a short-term fluctuation.
Understanding these dynamics is critical for informing conservation planning and policy,

particularly as port operations and development/construction will continue into the future.



1. Introduction

The Townsville Port Channel Upgrade Project (CU Project) is a jointly funded project
of the Queensland and Australian Governments and Port of Townsville Limited (POTL). The
CU project is the first stage of the long-term Port Expansion Project and was delivered over
a period of six years from 2019 to 2024. The expansion of the Port of Townsville is needed
to accommodate forecast growth in trade at the port and address current capacity
constraints. As part of the environmental approvals under the Commonwealth Environment
Protection and Biodiversity Conservation Act 1999 (EPBC Act) for the CU project, POTL

was required to develop and implement an Inshore Dolphin Monitoring Program (IDMP).

The aims of the IDMP are to establish baseline information and monitor and report
on changes, beyond natural spatial and temporal variation, in the distribution, abundance,
habitat use and behaviour of the Australian snubfin dolphin (Orcaella heinsohni) and the
Australian humpback dolphin (Sousa sahulensis) in association with the CU Project
construction activities. Both species are listed as ‘Vulnerable’ under the EPBC Act, the
International Union for Conservation of Nature (IUCN) (Parra et al. 2017a, Parra et al.
2017b), and the Queensland Nature Conservation Act 1992; and as ‘Near Threatened’ in
the Action Plan for Australian Mammals 2012 (Woinarski et al. 2014). The IDMP was
implemented over pre-, during and post-CU Project construction activities. The findings from

the IDMP were used to inform management decisions for the project on an ongoing basis.

The specific objectives of the Inshore Dolphin Monitoring Program are to:

1. Objective One: Develop an Inshore Dolphin Monitoring Program consistent with the
Coordinated National Research Framework to inform the Conservation and Management of
Australia's Tropical Inshore Dolphins (Department of the Environment, 2015), or subsequent

document; and that provides consistent and scientifically valid monitoring methodologies to



be able to determine trends and identification of stressors with the potential to cause adverse
impacts for these species. This program is to cover pre-, during and post-construction

timescales as separate identified study stages and reporting deliverables.

2. Objective Two: Provide a baseline assessment on the distribution, abundance and
habitat use of the Australian snubfin dolphin and the Australian humpback dolphin species
in areas of Cleveland Bay that may be directly or indirectly impacted by the CU Project and

adjacent non-impacted sites.

3. Objective Three: Monitor and report on changes, beyond natural spatial and temporal
variation, to the population and behaviour of the Australian snubfin dolphin and the
Australian humpback dolphin throughout construction, pile driving operations and dredging
activities for the CU Project, and a sufficient period of time post-construction to identify any
changes in population and behaviour of the identified dolphin species as a result of the said

activities.

4. Objective Four: Provide recommendations on key areas of adverse impact and
potential mitigation measures, including the identification of residual adverse impacts in

Cleveland Bay which cannot be managed.

5. Objective Five: Contribute to improving public awareness during the works on the

inshore dolphin populations in Cleveland Bay.

Monitoring of Australian snubfin and humpback dolphins spanned pre-, during, and
post-construction phases of the CU project. Surveys were conducted annually over June-
July, beginning in June 2019. The 2019 inshore dolphin surveys constituted the pre-
construction phase as no construction activity occurred during this period. The period

between 2020 and 2023 corresponded to the construction phase. The 2020 inshore dolphin



surveys corresponded with the initial marine construction activities of the rock wall, which
was completed in 2021and formed the perimeter of the 62ha Port Reclamation Area as part
of the Channel Upgrade project. Construction activities associated with these included the
placement of four different types of rock material: primary armour, secondary armour, core
rock and ballast rock to the north of the existing East Port, at the mouth of Ross River. Pile
driving activities for the CU Project started in 2021 and were limited to the development of
the temporary unloading facility (TUF), mooring infrastructure for the discharge of dredge
material from barges to the reclamation area and for the re-alignment of the channel
navigational beacons. TUF piling was intermittent from Aug 2021 to Early Jan 2022, and
beacon piling (20mins per day and not on consecutive days) was carried out in June/July
2022 and Feb 2024.Capital dredging activities (using a backhoe dredge) associated with
the widening of the shipping channel started in 2022 and continued in 2023 in Cleveland
Bay. By the 2024 survey period, all in-water CU Project construction activities had ceased,
marking the post-construction monitoring phase. In line with the scope of work, the objective
of this report is to provide a summary of the fieldwork conducted and the results of the 2024
inshore dolphin monitoring program, and report on any changes, beyond natural spatial and
temporal variation, in coastal dolphin abundance and distribution in association with the CU

Project since 2019.

Opportunistic sightings of other marine mammails (i.e., bottlenose dolphins, dugongs,
and humpback whales) were recorded during surveys and are presented in this report as

point distribution maps.



2. Methods

2.1 Data collection

2.1.1 Scientific permits and animal ethics

The 2024 inshore dolphin monitoring program was conducted under Scientific Permit
G19/42001.1 issued by the Great Barrier Reef Marine Parks Authority, permit SPP19-
001808 from the Queensland Department of Environment and Science, and Animal ethics

approval E477/18 from the Animal Ethics Committee of Flinders University.

2.1.2 Training
All IDMP personnel received boat and land safety inductions and were trained in
survey techniques and protocols between the 28" and the 315t of May 2024, which involved

testing all boat and land-based equipment and data collection procedures.

2.1.3 Vessel-based survey methods

As described in detail in the IDMP developed for the CU-Project, the boat-based
methods have been built on a Robust Design sampling structure (Pollock et al. 1990, Kendall
2013) of one primary sample per year (June-July), consisting of six secondary samples (i.e.

a complete survey) at Cleveland Bay and Halifax Bay (Fig. 1).
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Figure 1. Map of Cleveland and Halifax Bays study areas including inshore and offshore

transects, Ross Creek transect, and environmental stations.

Sampling methods followed standard procedures applied in capture-recapture
studies of inshore dolphin studies (Parra et al. 2006b, Cagnazzi et al. 2011). We used
automated survey design algorithms (Strindberg and Buckland 2004) implemented in the
software program Distance (Thomas et al. 2009) to design a systematic random line transect
survey with regular line spacing (1.6 km apart and at 45° to the shore) covering both inshore
and offshore areas within each of the survey sites (Fig. 1). Systematic line spacing results
in even spatial distribution of sampling effort, uniform coverage probability and better
information on dolphins’ spatial distribution and environmental variables than random

designs (Du Fresne et al. 2006, Thomas et al. 2007). Survey priority was given to inshore

15



areas over offshore areas depending on weather conditions, as both snubfin and humpback

dolphins occur mainly in inshore areas in the region.

As in previous years, we used three rigid hull inflatable boats (RHIBs) (Fig. 2) to
simultaneously survey different areas of each bay during June-July 2024 and complete a
full survey of each bay within one day. All surveys were conducted in mostly good sighting
conditions (Beaufort Sea State < 3 and no rain) between 07:00 and 18:00, depending on
suitable conditions. A crew of three observers and a skipper systematically searched for
dolphins forward of each vessel's beam with the naked eye. Once an individual or group of
dolphins was sighted, on-transect effort was suspended and the dolphins were approached
slowly (<5 knots) to within 5-10m to carry out photo-identification and record GPS location,
species identification, group size (minimum, best and maximum estimates), group age
composition (calf, juvenile, adult as defined by Parra et al. 2006a), and predominant group
behaviour (Mann 1999a). Groups were defined as dolphins with relatively close spatial
cohesion (i.e., each member within 100 m of any other member) involved in similar (often
the same) behavioural activities. Photographs of individual animals were taken using Nikon
D750 digital SLR cameras fitted with 50-500 telephoto zoom lenses. After all, or most
individuals in the group were photographed or dolphins were lost, transect effort resumed at
the location on the transect line where the dolphins were first sighted. Data on environmental
variables (water depth, sea surface temperature, turbidity, and salinity) were collected in situ
using a U-52 Horiba multi-parameter water quality meter at the location where each group
of dolphins was first encountered, at set points along the transect line, and at the beginning
and end of each transect leg (i.e., environmental stations, Fig. 1). All data on survey
conditions, survey effort and marine mammal sightings were recorded in handheld tablets

using CyberTracker software (http://www. cybertracker.org/).
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Figure 2. Rigid hull inflatable boats a) RV Manta, b) RV Koopa and c) RV Coda used for
boat-based surveys of inshore dolphins in the Townsville region during June and July 2024.
Research team conducting surveys of inshore dolphins in Cleveland Bay onboard vessel

Manta (d).

2.1.4 Land-based survey methods

Land-based observations of dolphin presence/absence around the port were carried
out from Berth 11, an elevated platform (LAT + 9. 5m above water) within the Port of
Townsville (Fig. 3). Berth 11 offers a reasonable vantage point over coastal waters adjacent
to the Port of Townsville that were previously identified as a dolphin high use area (Parra
2006). This area also coincides with the CU project area for land reclamation and widening
of the channel at the harbour entrance (Fig. 3). In 2024, land-based observations were

limited to the month of June (4-18%" of June) due to the closure of Berth 11 from June 19 to

17



August 1 for shipping schedules and required maintenance on the ship loader. Land-based
observations of dolphin presence/absence around the port in 2020 were carried out at the
entrance to Berth 11 (~400m south of original observation point) due to shipping activities,
and a three-week maintenance shutdown of the ship loader. Conducted over time, this
method enabled us to determine the dolphins’ occurrence (presence/absence) in this area
and assess their response to CU project construction activities including capital dredging,

rock dumping and pile driving operations (Pirotta et al. 2013).

Visual scan sampling every 15 min was used to record the occurrence
(presence/absence) of dolphins (Altmann 1974, Mann 1999b), covering all visible water
within a radius of approximately 1km around the observation point at Berth 11. Observations
were conducted by a team of two-three trained observers between 06:00 and 18:00
depending on weather conditions. Visual observations were mostly undertaken during good
weather conditions (i.e., Beaufort sea state < 3 and no rain). Each observer scanned to the
left or the right-hand side of the observation point with the aid of 7 x 50 binoculars and the
naked eye. During each visual scan we recorded, within a radius of approximately 1km
around the observation point, the presence or absence of dolphins, their group size, age
composition, behaviour, the number, and types of boats traversing the area,
presence/absence of maintenance dredging (i.e., routine dredging, not associated with CU
construction activities, carried out by a trailing suction hopper dredger every year to remove
material that has drifted into the channel over time and limits the access of ships), and the
presence or absence of CU construction activities including rock dumping (associated with
rock wall construction in 2020), capital dredging (i.e., dredging carried out by a backhoe

dredger in 2022 and 2023), and piling (beacon pile driving carried out in June/July 2022).



a) Berth 11 b) Researchers conducting observations

Figure 3. Location of (a) land observation point on Berth 11 within the Port of Townsville,

and (b) researchers conducting dolphin surveys from the berth.

2.2 Data analysis: Population demographics

2.2.1 Photo-identification

Capture-recapture histories of distinctive individuals were used to estimate
abundance of Australian snubfin and humpback dolphins across all years of study using
capture-recapture population models (Williams et al. 2002, Amstrup et al. 2005). An
individual was considered ‘captured’ when it was first photo-identified, and ‘recaptured’ when
photo-identified thereafter. Individual snubfin and humpback dolphins were identified based
on the unique natural marks on their dorsal fins (Parra and Corkeron 2001, Parra et al.

2006a).

All photographs taken during boat surveys were examined and subjected to a strict
quality and distinctiveness grading protocol before matching and cataloguing to minimise
misidentification (Hunt et al. 2017). Only high-quality photographs of distinctive individuals
were used in analyses. We used DISCOVERY (version 1.2.) software to process, match,

catalogue and manage all the photo-identification data (Gailey and Karczmarski 2012).
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Both “on effort” and “off effort” sightings were combined and included in capture- recapture
(CR) analyses. Capture history data were analysed using the program MARK (White and

Burnham 1999).

Note that as we add a new year to the dataset and photo-identification catalogue is
revised and corrected for any misidentification error (i.e., false negative: one individual is
identified as two, false positive: two individuals are identified as one). the capture-
recapture models are updated, along with the corresponding annual population

demographic estimates.

2.2.2 Capture-recapture models

The Multistate Closed Robust Design model (MSCRD, Brownie et al. 1993, Nichols
and Coffman 1999, Kendall and Nichols 2002, Kendall 2013) was employed for analysis of
the capture-recapture data to estimate abundance, apparent survival, and movements
between sites and temporary emigration between primary samples. The MSCRD extends
the Closed Robust Design model (CRD, Pollock 1982, Kendall and Nichols 1995, Kendall
et al. 1995, Kendall et al. 1997) to include multiple states following the multistate model for

recapture data (Arnason 1972, 1973, Brownie et al. 1993, Schwarz et al. 1993).

The MSCRD model provides estimates of:

1. Apparent survival (¢) between primary samples (probabilities of being
alive and present in the sample area) for both sites.

2. Movements between sites (¢ MS) and temporary emigration (¢ TE)
between primary samples (probabilities of movement between states). Temporary
emigration is included among the movements in the MSCRD by defining an
‘unobservable’ state for dolphins that are temporarily absent (offshore or elsewhere)

during a primary sample. There are two parameter estimates for temporary



emigration in any primary sample: the probability of being absent from the sampling
area in that primary sample (emigration) and the probability of returning in that
primary sample after an absence (reimmigration).
3. Abundance at each primary sample (N, number present on a site) for
both sites.
With two sites, three states were defined: two observable states on the two sites (CB
and HB) and one unobservable state (U) for temporary absence from both sites. Dolphins
may move between all three states (or stay where they were) between consecutive pairs of

primary samples, with such movements being modelled as transition probabilities.

Different patterns or structures of temporary emigration may be estimated by applying
constraints to the corresponding temporary emigration and (re) immigration parameters. An
implication of estimating these separately is that the probability of emigration in an interval
is related to the probability of emigration in the previous interval or has a Markovian temporal
structure. When the probability of emigration in an interval is equal to the probability of
staying away after a previous absence, whether an animal comes or goes is a random
process and the temporary emigration structure is referred to as ‘random’. When the
probability of emigration in an interval is equal to the probability of immigration after a
previous absence there is an even flow of animals into and out of the sample area and the
temporary emigration structure is referred to as ‘even flow’. Kendall (2013) may be the most

accessible account of these temporary emigration structures.

Capture-recapture studies typically yield an estimate of apparent survival or the
probability of both remaining alive and available for recapture in the sample area. Estimates
of the probability of remaining alive (biological survival) must be made by other means. If
estimates of both apparent and biological survival are available however, an estimate may

be made of the probability of permanent emigration from the sample area. More formally, an



estimate of the probability of permanent emigration £ may be derived as £ = 1 — % where ¢

is an estimate of the probability of apparent survival and S is an estimate of the probability

of biological survival.

Life history data on Australian inshore dolphins that might support an estimate
of the rate of biological survival for a species are extremely limited. Studies on the Indo-
Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary in southern China
(Huang et al. 2012) yielded an estimate of biological survival of 0.97 (95% CI = 0.96-0.98)
per annum. The Indo-Pacific humpback dolphin is a close relative of the Australian
humpback dolphin and the biological survival rates of the two species may be expected to
be similar. The adult survival rate for the Australian snubfin dolphin (Orcaella heinsohni) was

reported as 0.95 per annum by Taylor et al. (2007).

2.2.3 MCRD Data preparation

The MSCRD requires data identifying whether each individual dolphin was or was
not captured in each combination of primary and secondary sample (PS x SS). There were
many examples of the same dolphins having been captured more than once in the same
primary and secondary samples. These repeat captures arose from the simultaneous
operation of three boats and because of within-day movement of dolphins between the
transects where they were first captured to other transects being surveyed later in the day.
There was a mixture of captures made ‘on-effort’ (while following the pre-defined
transects) and captures made ‘off-effort’ on transit between transects. Repeat captures in
the same primary and secondary samples were redundant and deleted from the data prior
to model fitting. Deletions were made in two steps: when repeat captures were made both
on- and off-effort, the on-effort captures were retained; and among the remaining captures,

the capture made first was retained.



The MSCRD models the data from both sites simultaneously and requires that no
dolphin is recorded as having been captured on both sites in the same primary sample.
There were a few examples of dolphins having moved between the sites within a primary
sample and having been captured on both. The capture histories for these dolphins were
modified to show all captures within each primary sample as having been made on the site

where they were first captured.

The survey design specified six secondary samples (SS) on each site in each
primary sample (PS). Pairs of secondary samples were taken consecutively on each site.
An even number of secondary samples was planned in anticipation of small numbers of
captures being made to allow a strategy of collapsing each consecutive pair of secondary
samples into one (1&2=1, 3&4=2, 5&6=3) to increase the per secondary sample numbers
of captures (Table 6). However extra time was allocated for sampling to allow for days lost
due to poor weather and these days were used to complete further secondary samples as

the opportunity arose.

2.2.4 Goodness of fit

It is necessary to assess whether the data collected are consistent with the statistical
model proposed for their analysis, i.e., to assess the goodness of fit of the data to the model.
We used program U-CARE (Choquet et al. 2005) for goodness of fit tests. The tests were
performed on data collapsed to primary samples; for models for a single site, the tests
assume a Cormack-Jolly-Seber (CJS; Lebreton et al. 1992) type of model, and for MSCRD
models they assume a multistate version of the model that allows for transitions between
states (JollyMove; Brownie et al. 1993). If there is significant lack of fit, it is necessary to
adjust the estimates using an estimate of the variance inflation factor ¢ and a version of AIC.

for over dispersed data (QAICc; Burnham and Anderson 2002). The variance inflation factor



¢ was estimated as the ratio of the overall test statistic for the model from U-CARE and the

model degrees of freedom.

2.2.5 Model selection — AIC

The modelling process involves fitting a set of models with alternative parameter
structures and comparing them for fit to data and parsimony. Models are compared with the
Akaike Information Criterion corrected for small sample sizes (AlCc, Burnham and Anderson
2002), with smaller values of AIC. indicating better fitting models, and with AIC.: weights,
which measure the relative likelihoods of the models in the set. When one model in the set
has a clearly lower AIC. than all others and has attracted the major proportion of the AICc
weight, the parameter estimates from this ‘best’ model are reported; when several models
have similar AICc values and share the AIC: weight, model-averaging may be applied
(Buckland et al. 1997) whereby weighted averages of the parameter estimates from several

models are reported.

2.2.6 Estimating the total population size

Not all individuals have sufficiently distinctive marks to support unambiguous
identification. Only distinctively marked individuals may be ‘captured’ in photographs and
capture-recapture models can only yield estimates of the number of distinctively marked
members in a population. This estimate may be adjusted to yield an estimate of total
population size by dividing by an estimate of the proportion of distinctively marked

individuals in the population as described below.

For each species, the number of individuals depicted by good quality photographs (

P) and, of those, the number that depicted a distinctively marked individual ( 2, ) was

recorded for each group encounter. A binary logistic model was fitted to the data on



distinctive and non-distinctive dolphins to estimate the marked proportion (1\7Ip) of the

population for each species.

The total abundance (N,,,,;) of each population for any sampling period and site may
be estimated by dividing the estimated abundance of marked dolphins (N,,,4,xeq) by the

estimated marked proportion (1\7Ip):
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Log-normal confidence intervals for abundance estimates may be calculated
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2.3 Data analysis: Spatial distribution

2.3.1 Modelling framework

Our goal was to model dolphin’s spatial distribution in the study area before (2019)
during (2020-2023) and after (2024) CU project construction activities. We aim to gather
quantitative indicators of differences in the spatial distribution of snubfin and humpback
dolphins across years. We use a large collection of quantitative methods to do this, from
descriptive statistics to likelihood ratio tests. Note that as we add a new year to the dataset
the species distribution models are updated, while considering interannual variation, and so

are the corresponding spatial predictions and related statistics for every year.

We also aimed to evaluate whether CU project construction activities (e.g., rock

dumping, capital dredging, pile driving) were associated with dolphin’s spatial distribution.



Our evaluations were primarily through model-based inference and descriptions of

models’ behaviour. We did the following:

1. Estimated covariates’ “Relative Variable Importance” for a range of human-activities

(boats presence, presence of anthropogenic disturbances) and environmental
covariates (SST, salinity).
2. Calculated likelihood-ratios between models with anthropogenic disturbances vs
models without.
3. Marginal plots of covariates’ functional relationship with species’ abundances
4. Assessed models’ predictive performance (e.g., ROC-AUC and PR-AUC scores).
As was detailed in the previous report, the modelling framework used for species
distribution modelling was the high-performance “boosting” technique (Bihimann and Yu
2003, Schmid and Hothorn 2008), specifically emulating the works of Kneib et al. (2009) and
Hothorn et al. (2010). The method is an ensemble method that automatically performs model
selection among different sub-models, such as spatial splines, temporal splines, spatial
autocorrelation, and linear effects, etc. The method also addresses many common data-
challenges, including small samples size and high-dimensionality (“small-n high-p
problem”), and high multicollinearity among spatial covariates (Oppel et al. 2009, Schmid et
al. 2010, Bihlmann et al. 2013, Mayr et al. 2014). It is also related to other high-performance

methods (Meir and Ratsch 2003, Chen and Guestrin 2016) and can decompose variation

into spatial, temporal, and observational covariates, as motivated by Hothorn et al. (2010).

Species distribution models for 2019, 2020, 2021, 2022, 2023 and 2024 incorporated
9 sub-components, representing different groupings of covariates, and wrapped in different
functional forms (Table 1). The method is supposed to only select the most important sub-
models. The unimportant sub-models are either “shrunk” to have only a small contribution
to the overall ensemble’s prediction, or they are ignored altogether. The various components

were:



1. Main effect penalized least squares, one for each covariate representing weather
conditions, ecological variables, and boats.

2. Interaction penalized least squares, one for each covariate representing ecological
variables and boats, including an interaction with “year” (i.e., different slopes and
intercepts for 2019, 2020, 2021, 2022, 2023 and 2024).

3. Decision-tree (1), including covariates for weather conditions.

4. Decision-tree (2), including covariates for ecological variables, boats, and the distance-
to-disturbance covariates (rock dumping, capital dredging and piling).

5. The same as base-learner #2 plus “year” as a potential interacting covariate.

6. Main-effect univariate splines for time-of-day and time-of-year.

7. Interaction univariate splines for time-of-day and time-of-year, including “year” as an
interaction term (i.e., different marginal effects for each year).

8. Main-effects bivariate splines for large-scale spatial trends.

9. Interaction bivariate splines for large-scale spatial trends; including “year” as an

interaction term (i.e., different marginal spatial trends per year).

As in previous years, we chose to discard the radial basis function (used to model small-
scale spatial autocorrelation). These were discarded because: i) they become
computationally infeasible with more interaction terms (per year effects); ii) they were not
selected in past-years’ best models (particularly 2022), and iii) they are functionally similar

to bivariate spatial splines.



Table 1. Covariates considered for the species distribution modelling of Australian Snubfin and humpback dolphins in Cleveland and

Halifax Bays between 2019 and 2024 with columns indicating the: i) type of sub-model used for each covariate group within the larger

ensemble-of-models, ii) the data-source for training the ensemble and iii) data source at prediction locations (how the covariate was

extrapolated outside the points of data-collection), and iii) data source at prediction locations (how the covariate was extrapolated

outside the points of data-collection).

Sub-models Model type Covariate Covariate description Source at training Source at prediction
BSS Beaufort Sea-State (BSS), 5-point ordinal scale In-situ estimate Constant: average
conditions
Main Effect
PLS, Swell Estimated swell height In-situ estimate Coni’:)ann(;titii\:]e;rage
1,2,&3 Interaction
PLS, and Visibility Visible distance, 3-point ordinal scale In-situ estimate Constant, average
Decision trees conditions
Glare intensity, 4-point ordinal scale, summed two . . Constant, average
Glare . In-situ estimate s
sides conditions
SST Sea surf_ace temperature (SST) from In-situ measurement Interpolated spatial
multiparameter water sensor surface
Salinity Conductivity from multiparameter water sensor In-situ measurement Interp:Lartfigesanal
Turbidity Turbidity from multiparameter water sensor In-situ measurement Interp(S)Lartfzc(j:espatlal
Main Effect
PLS, . . . . GIS, derived .
12485 Interaction River Distance Log-distance to coastal waterways/estuaries (Dyall et al. 2004) Same as training
Dez:_siso,na?ries Reef Distance Log-distance to reefs GIS, derived Same as trainin
(indicative reef outline as mapped by GBRMPA) (Beaman 2012) 9
GIS, derived
Seagrass Log-distance t d (McKenzie et al. 2014) s traini
Distance og-distance to seagrass meadows . ame as training
Foreshore Log-distance to foreshore ecotypes (Euclidean GIS, derived Same as trainin
Distance distance to only mainland foreshore ecotypes) (Beaman 2012) 9




Sub-models

Model type

Covariate

Covariate description

Source at training

Source at prediction

Land Distance

Log-distance to land (Euclidean distance to
coastal boundary, including mainland and large

GIS, derived
(Beaman 2012)

Same as training

islands)
GIS, bathymetric DEM -
Bathymetry Average depth (Whiteway 2009, Beaman 2010) Same as training
Boats Total Counts of all boats in vicinity In-situ counts InterpcS)Lartfzc(j:espatlal
Boats Small Counts of all boats in vicinity, small size (< 5m) In-situ counts Interpolated spatial

surface

Boats Medium

Counts of all boats, medium size (5-10m)

In-situ counts

Interpolated spatial
surface

Boats Large

Counts of all boats, large size (> 10m)

In-situ counts

Interpolated spatial
surface

Boats Fishing

Counts of all fishing boats and trawlers

In-situ counts

Interpolated spatial
surface

Boats
Recreational

Counts of all recreational motorboats and sailing
boats

In-situ counts

Interpolated spatial
surface

Boats Industrial

Counts of all barges, tugs, tankers, ferries, and
cruise ships

In-situ counts

Interpolated spatial
surface

Log-distance to rock dumping during days of

Interpolated spatial

Rock Dumping activity in 2020; otherwise, max distance GIS, derived surface
. Log-distance to piling locations during days of . Interpolated spatial
Piling activity in 2022; other max distance GIS, derived surface
Maintenance | Log-distance to maintenance dredging locations GIS. derived Interpolated spatial
Dredging during 2019 and 2020; other max distance ’ surface
. . Log-distance to construction during days of . Interpolated spatial
Capital dredging activity in 2022 and 2023; other max distance GIS, derived surface
Min distance to | Minimum distance over rock dumping, piling, and . Interpolated spatial
. ; : . GIS, derived
disturbance dredging (capital and maintenance).. surface
Pointwise Binary indicator of onboard records of In-situ measurement Setto 0

disturbance

disturbances being present




Source at training

Source at prediction

Sub-models Model type Covariate Covariate description
Main-effect Time-of-day Metric time at observations In-situ measurement Constant, average
i conditions
6 7 splines, and
| Intergcnon Day-of-Year Julian-da In-situ measurement Constant, average
splines y y conditions
Main-effect
bivariate
splines, . . . .
8,9 ) Space X &Y UTMs used in spatial spline GIS Same as training
Interaction
bivariate

splines




2.3.2 Main Effects and Interactions

Some of the covariates are represented in more than one sub-model, especially as
different sub-models represent “main effects” versus “interaction effects” with year. During
the automatic model-selection and regularization, the model selects the best combination of
main-effects and interaction effect. For example, the penalized least-squares sub-models
can represent a univariate main-effect with no interactions; or they can have an interaction
with “year”, such that the slope and intercepts vary per year. Those sub-models that include
“year” as an interacting categorical variable have more penalization than the “main effects”
learners. This means that the automatic mode-selection should only select the higher-order
interactions if the extra complexity is warranted and there is some important difference

between years, in terms of dolphin spatial distribution.

2.3.3 Disturbances
There were multiple distance-to-disturbance covariates that were introduced
this year. In past IDMP reports, the presence of such disturbances was simply recorded in-

situ, but such information was difficult extrapolate to a broader spatial field.

Using GIS and UTM coordinates, we mapped these disturbances to specific
points, and approximate times (based on data provided by the Port of Townsville) across
the study area, including Cleveland and Halifax Bays. This allowed us to calculate the

distance from each dolphin sighting (and null points’) to the disturbance on specific dates.

These disturbance covariates included:

o distance to rock dumping, present in June-July of 2020. This activity
was related to CU project and occurred immediately adjacent to the port

lands.distance to piling activities present intermittently between 28/06/2022 to



9/07/2022. Piling occurred at a few distinct locations with known dates along the
channel from the Port of Townsville to the south-east region of Magnetic Island.

. distance to capital dredging (BHD), occurring intermittently in the
winters of 2022 and 2023 on known dates, along the channel from the Port of
Townsville to the south-east region of Magnetic Island.

o Minimum distance to disturbance. This spatial covariate was the
minimum of all the above covariates when they were available.

. distance to maintenance dredging (TSHD) present during 24/05/2019
to 09/06/2019 and from 1/06/2020 to 29/06/2020). These activities occurred along

the channel from the Port of Townsville to the south-east region of Magnetic Island.

Distances to the disturbances were calculated for each dolphin observation
and each null-point. The distances were “marine distances”, such that they accounted for
islands and mainland obstructions. See Fig. 4 for an example of the shortest distance

between a dolphin located north of Magnetic Island, and a disturbance.

During time-intervals in which a disturbance was not occurring, we set the
covariate’s value to the maximum over the study area. In other words, when a disturbance
wasn’t present, it was recorded as being maximally distant. This was necessary to fill null-
values with a proper metric. Years without a particular construction activity (2019 and
2024) provide a reference point for comparison. Including non-disturbance years prevents
bias in the dataset by ensuring that the model is not only capturing responses to
disturbance, allowing us to assess whether any observed changes in dolphin distribution
were temporary or persistent, whether changes are potentially due to CU construction

activities or just part of the dolphins' natural behavior.

All the distances were logged and then re-scaled to zero-mean and unit-

variance.



Figure 4. Demonstration of the shortest-distance path between a disturbance point to the
south-east of Magnetic Island, and a dolphin point to the north of Magnetic Island, whereby
the straight-line is obstructed by the island. These shortest marine paths were used for the

distance-to-disturbance covariates.

2.3.4 Model Parsimony, Hyperparameters and Regularization

The automatic ensemble-building and shrinkage mechanism theoretically improves
model predictive performance by shrinking the weights of unimportant sub-models so that
they have a small overall effect. This is also known as |1-regularization (which is equivalent
to the Lasso). Therefore, the final ensemble is more parsimonious than the full theoretical

model which could include all sub-models.

The degree of shrinkage/regularization was controlled by several hyperparameters.
These are explained in the following list. The values for each of these hyperparameters was

tuned via 10-fold cross-validation, such that the hyperparameters with the best predictive



performance, according to the 10-fold cross-validation log-likelihood, was selected as the

final model used for inference.

The pertinent hyperparameters were:

o the number of boosting iterations m (aka the “early stopping” parameter). The
more iterations meant more complex models, and fewer boosting iterations meant more
shrinkage and fewer selected sub-models.

J the learning-rate (aka “shrinkage” rate) which down-weights the contribution
of any individual submodel. This was fixed to a single value per species (0.01-0.12), after
manually experimenting with different values to get final models that had between 1000-
6000 boosting iterations. A lower shrinkage rate meant that the model required more
boosting iterations and has a smoother surface; a higher shrinkage rate meant the model
required fewer boosting iterations and produced a less-smooth surface. A smaller rate is
generally preferable but comes at high computational cost (time and electricity).

o Max-depth of decision-trees, which could take on values of [3, 4]. This
hyperparameter was only relevant for the decision-tree sub-models (No. 3, 4 and 5). The
maximum tree depth (maxdepth) controlled the degree of interaction among covariates
and the number of partitions of the covariate space. A small maxdepth meant that only
two-way interactions were allowed, and there were only three splits of the covariate
space (per boosting iteration). A higher maxdepth allowed higher-order interactions and
allowed many more splits of the covariate space.

. Bucket weight i.e., the minimum weight of terminal leaves in the decision-trees,
which could take on values in the range of [2,6]. Lower values allow fitting more granular
variation, at the risk of overfitting. Higher values require patterns to have more support
in terms of the number of points on either side of a split, at the risk of underfitting rare

but important patterns.



o Minimum test-statistic threshold (i.e., mincriterion, in the mboost R-library)
which could take on values [0.4, 0.5, 0.6, 0.7, 0.75, 0.8 0.85]. This hyperparameter was
only relevant to the decision-tree sub-models (No 3, 4 and 5). It controlled the hurdle rate
for testing whether a split in the covariate space was significant enough to continue
growing a decision tree. Lower values allowed the trees to grow longer (more interactions
and more splits); higher values prevented the tree from growing too long and prevented
unimportant splits from entering the model.

o Degrees-of-freedom of the main-effects spatial splines, which could take on
values [12 - 38]. This hyperparameter was only relevant to the main-effect spatial spline
(sub-model No.8). A higher degree-of-freedom allowed a more flexible spatial surface,
while lower values resulted in less spatial complexity.

o Degrees-of-freedom of the spatial splines with year-interactions, could take on
values in the range [18, 40] In previous years, these values were fixed as a multiple of
the main effects. In either case, the values were higher to absorb per-year marginal
variation above-and-beyond the variation that is common to all years (which should be
explained by the main-effect spatial base-learner).

. Degrees-of-freedom of the main-effects of the spatial-autocorrelation radial
basis function (for sub-model No.10) which could take on values [12 - 36]. Higher values
allowed “wigglier” auto-correlation effects, and lower values enforced smoother auto-
correlation effects.

. Degrees-of-freedom of the spatial-autocorrelation radial basis function with
year- interactions (sub-model No.11). which could take on values [12 — 36]. In previous
years, these values were fixed as a multiple of the main effects, but were allowed to vary
somewhat independently in this study.

o K-knots in spatial splines, i.e., the number of basis functions underlying a

spline. This could take on values between 20 to 36. Higher values allow more granular



spatial processes, at the risk of overfitting noise, while lower values force fitting more
large and systemic patterns, at the risk of underfitting local spatial variation.

. Other parameters, like the degrees-of-freedom of the penalized least-squares
models (sub-models No. 1 and 2) and the degrees-of-freedom of the temporal splines
(sub-model No.5) had their values fixed to 1 and 4, respectively, for all models (i.e., the

recommended default values of the mboost library).

2.3.5 Relative Variable Importance

After tuning the hyper-parameters, we trained a final model for each species.
These final models were used for inference, including estimating the relative variable
importance (“contribution to risk-minimisation”; Elith et al. 2008) as well as spatial prediction
of dolphin locations and abundance, and used for conducting comparative likelihood-ratio

tests.

2.3.6 Covariate Patrtial Plots

Whereas RVIs and likelihood ratio tests can help quantify the importance of a
covariate upon a species’ distribution, they do not provide a sense of the functional-
relationship or direction of the relationship between a covariate and the response variable.
With traditional linear models, one can look at the direction and magnitude of coefficients to
inference such relationships, but these are unavailable for machine-learning methods.
Furthermore, the high-dimensional interactions that are present in machine-learning models
means that a single covariate can rarely be interpreted in isolation, but must be observed

as party to multiple two- or three-way interactions with other covariates.

Therefore, we made marginal plots of the two-way interactions between the

high-RVI covariates and the (predicted) response variable. From these non-linear



interactions, we looked for patterns in the relationship and magnitude of relationship

between species’ predicted abundance and the underlying covariates.

A pair's marginal plot was created by first fixing the values of all other
covariates to their 2024 mean-values, and then varying the pair’s values uniformly
throughout its empirical range (in 2024), to get a 2D surface. The 2D surface was truncated
to minimum convex hull of a pair’s empirical values (effectively excluding combinations of

values that do not exist in reality, like maximum depth and zero distance to land).

2.3.7 AUC statistics

Model performance was assessed by statistics including the area under the
receiver-operator curve (cv-ROCAUC) and the area under the precision-recall curve (cv-
PRAUC) (Fielding and Bell 1997, Harrell Jr 2015). For the AUC statistics, values above 0.5

to 1 are considered improvement over random classification.

2.3.8 Likelihood-Ratios: Inference about disturbances

In order to evaluate whether the disturbance covariates had an important
contribution to the species’ distributions, we used generalised likelihood ratios (Royall 1997)
to compare two models per species: the best model according to hyperparameter tuning vs.
a reduced model which dropped all the disturbance covariates (e.g., distance to rock-

dumping, distance to dredging, etc).

When the likelihood ratio between the reduced model and the full model is very
high (>>1), it is evidence that the disturbance covariates are not significant contributions to
the SDM. When the likelihood ratio between the reduced model and the full model is very
low (<<1), it is evidence that the disturbance covariates are significant. Furthermore, the

degree of significance is monotonic with respect to a decrease in the likelihood ratio,



allowing us to compare between species and answer the question: “are disturbances more

or less significant for snubfins or humpbacks?”

We used a 5-times 10-fold cross-validation to approximate the “expected
likelihood” (as opposed to the within-sample likelihood), such that the likelihood calculations
were evaluated by training the model 5-times on 10-fold subsets of the data, and then
estimating the likelihood on the hold-out samples. The mean over the cross-validation runs
(aka CV-likelihood) was our estimate for the expected likelihood. It should be noted that the
AIC is famous for approximating the expected likelihood, i.e., minimising the AIC maximises
the expected likelihood (Akaike 1974, Akaike 1998). Therefore, by comparing two models
by their CV-likelihoods, we are essentially conducting the same type of model comparison

as minimising the AIC (albeit, with a different approximation of the expected likelihood).

We also computed CV p-values to contextualise our confidence in the
conclusions of the likelihood ratio. The CV p-values were the proportion of the 5-times CV-
runs in which the reduced model was better than the best-model. For example, if the reduced
model defeats the best model 0 times, then our p-value would be 0.0. If the reduced model
defeats the best model in all CV-runs, then the p-value would be 1.0. The approximate p-
value can take on multiples of 0.2 (i.e., 0, 0.2, ...., 1.0). Low p-values mean that the full-
model can be rejected with more confidence that the conclusion is robust to multiple

realisations of the data.

2.3.9 Spatial predictions

Using the best model (according to cross-validation) we produced three types of
spatial partial plots. The first partial plot was the probability of occurrence
(presence/absence) of snubfin and humpback dolphins. This is the expected counts of
animals in groups if the group is present. This is not to be confused with abundance,

because a very sparsely distributed population which aggregates into large herds/pods



could have the same abundance as an evenly distributed population with small group sizes.
The third spatial partial plot was the product of the probability of occurrence and group sizes,
which yields a predicted density of snubfin and humpback dolphins in Cleveland Bay and

Halifax Bay.

2.3.10 Spatial Interpolation of In-Situ Covariates

As was performed in the previous report, as a pre-processing step prior to the species
distribution model spatial predictions, we needed to interpolate values of some of the
covariates (i.e., generate spatial maps). This was necessary for those covariates which were
estimated or measured in-situ during the boat surveys (such as SST, turbidity, salinity, boats
total, boats small, boats medium, boats large, boats fishing, boats recreational, and boats
industrial). Being measure/estimated in a point-wise fashion, they have no natural map that

we can use for the species distribution model spatial prediction.

As we did in the previous report, the spatial interpolations were conducted by pooling

two spatial modelling techniques:

o Generalised additive models GAMs: model-averaging of spatial GAMs; and

o component-wise boosting.

Each in-situ covariate was modelled according to both modelling techniques, and
their spatial predictions were averaged. Both techniques allowed decomposition of variation
into spatial components and temporal components. Only the spatial components were used
for generating the spatial interpolations (in other words, all temporal effects were set to their

mean-value across the entire spatial survey area).

Regarding missing data (due to equipment malfunction), we employed a two-round
approach. During round #1, all rows of data that had missing data were deleted, and an

initial working-model was made for SST, turbidity, salinity and all the boat-covariates, for a



total of 10 models (one per covariate that required interpolation). The missing values of
these covariates were then imputed using the Round #1 models, and a second round of
models were run, conditional on the imputed values from Round 1 (thereby allowing us to
use all rows of data). The Round 2 models were then used to interpolate the values of the

covariates across the study area for all years.

2.3.11 Spatial Interpolation by Generalised additive models (GAMSs)
The spatial interpolation by GAMs consisted of running multiple models and model-
averaging their predictions by AIC weights. We used the R-package mgcv (Wood 2003).

The different models consisted of different combinations of the following terms/sub-models:

1. year-as-factor (i.e., different intercepts per year)

2. three of the following main-effects using thin-plate shrinkage splines: spline
(bathymetry), spline (distance to rivers), spline (distance to reefs), spline (distance to
nearshore), spline (distance to land), spline (SST), spline (salinity), and spline (turbidity).
Only three combinations of covariates were tested, in which covariate-sets were selected
based on minimizing in-group correlation among the covariates.

3. one of the following soap-film spatial smooths: spline (latitude, longitude) as a
main-effect spatial; and spline (latitude, longitude, interaction=year) as a per-year
interaction.

4. one of the following bivariate splines: spline (time-of-day, time-of-year) as a
main-effect temporal spline; and spline (time-of-day, time-of-year, by=year) as a per-year

interaction spline.

It should be noted that the GAM method benefitted from the soap-film spatial smooth
that respects maritime boundaries and islands (unlike generic kriging methods or generic

bivariate splines).



It should be noted that there were additional, more-complex models that were
possible, such models with bivariate interactions among covariates, but these often-had
difficulty converging and failed. Nonetheless, given the small amount of data, it is reasonable
to bias the models to only those that have a small amount of complexity (i.e., a few number
of covariates and degrees-of-freedom), and use model-averaging to weight models

according to their predictive performance.

The models for SST, salinity, and turbidity used a Gaussian distribution
(sometimes the values were log-transformed and mean-centred in order to get
approximately normally distributed values), whereas the boat covariates (boats total, boats
small, boats medium, boats large, boats fishing, boats recreational, boats industrial) were
modelled according to a Poisson distribution (note: in past years we tried to interpolation-
GAMS with a zero-inflated Poisson distribution, but these proved computationally infeasible

with more data).

The final model was combined by discarding models with less than 5% AIC
model-weights and weighting the remaining predictions according to their AIC model-

weights.

2.3.12 Spatial Interpolation by Boosting

The second interpolation method was boosting. The technique was identical to that
used for species distribution modelling for snubfin and humpbacks but excluded all
covariates relating to weather conditions (e.g., BSS, glare), thereby focusing on large-scale

spatial processes for interpolation, and not intra-day weather variation.

The interpolated covariates SST, salinity, and turbidity were run using a Gaussian

distribution, whereas the boat covariates (boats total, boats small, boats medium, boats



large, boats fishing, boats recreational, boats industrial) were modelled according to a zero-

inflated Poisson distribution.

2.3.13 Spatial Interpolation of Distance-to-Disturbances

Although the disturbances (piling, rock dumping, capital dredging) were
literally spatial fields, we transformed them into spatial fields by calculating distances each
marked point of a disturbance, from every grid-cell in the study area. This was necessary in

order to incorporate such covariates that were used during model training into the SDM.

The spatial field of each disturbance was calculated by a two-step process.
First, we generated ~500 points systematically across the study area’s marine space. At
each point, we calculated the (log) distance to a disturbance. If a disturbance was a linear
feature (like the maintenance dredging) or was multiple points (like piling), we took the
minimum distance. Secondly, we used these points as inputs to a high-capacity spatial spline
model, whose response variable was the distance-to-disturbance. Finally, using the trained
model, we interpolated to all the remaining grids in the study area. An example of the 2022

distance-to-capital dredging is shown in Fig. 5.
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Figure 5. Example of spatial field representation of log-distance to capital dredging in 2022.
The X and Y axes represent UTM coordinates (Universal Transverse Mercator projection).
The colours represent the distance in meters from the dredging activities. Green areas:
Farthest from the dredging activity. Yellow areas: Intermediate distances. Pink areas:
Closest to the dredging activity. The scale bar on the right shows values ranging from low
(white) to high (green). These values correspond to the distance in meters from the dredging

location.
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2.4 Data analysis: Patterns of attendance to the port area

2.4.1 Land-based surveys
We have analysed the land-based survey data using a combination of descriptive

statistics, and statistical ensemble-modelling.

This report provides the following descriptive statistics: total dolphin counts by
species, and their behavioural compositions (resting, foraging, socialising, and travelling).
These dependent variables are further summarised by covariates, including hours of day,
presence of boats, presence of capital dredging, presence of maintenance dredging,
presence of rock dumping, presence of piling, as well as an overall comparison of the counts
of dolphins in 2024 vs 2019, 2024 vs 2020, and 2024 vs 2021, 2024 vs 2022, and 2024 vs
2023. The later represent our primary inferential tool for testing whether there have been
any changes on dolphin occurrence around the port area due to boats, maintenance

dredging and CU construction activities (i.e., rock dumping, capital dredging, and piling).

For statistical tests, we used a method called the Bayesian p-value (Gelman et al.
1996). We used the occurrence records of 2019 as a type of “null model” (characterising
pre-construction conditions) and calculated Bayesian p-values which compared dolphin
presence in 2024 to those of previous years. Low Bayesian p-values suggest that the
presence of dolphins was lower than what would be expected according to the 2019 null-
model, while high Bayesian p-values suggest that the 2024 data is consistent with the 2019

null-model.

Likewise, we used the presence/absence of dolphins during no-capital dredging no-
maintenance dredging, no-rock dumping, and no-piling periods across all years as the “null
model” (characterising normal conditions of the dolphins) and calculated the probability of
seeing dolphin counts as low as that observed during capital dredging, maintenance

dredging, rock dumping, and piling activities. Low Bayesian p-values provide evidence that



the counts of dolphins were lower that what would be expected according to the null models
of no capital dredging, no maintenance dredging, no-rock dumping and no-piling periods
(i.e., a low-probability events according to the null-models), while high Bayesian p-values
suggest that the counts during disturbance activities were no different than under normal

background conditions.
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where:
y := occurrences of dolphins during normal non-dredging scans
0“ := estimated probability of dolphins occurrences during non-dredging scans
N@

ceans .= number of scans with no dredging

NAredge .— number of scans with dredging

Ndredge := Observed number of occurrences of dolphins during dredging

The above formalism is specific to the calculation of Bayesian p-values for binary-
occurrences. For counts/abundances, the same framework applies, but instead uses a

Poisson-Gamma distribution as the null model.

2.4.2 Land-Station Ensemble Modelling
We used the R-package mgcv to model the presence/absence of snubfin and
humpback dolphins per scan, as an ensemble of GAMs. In particular, we used logit-binomial

response variable (i.e., presence/absence) and included various environmental predictors



and anthropogenic indicators modelled as linear effects, including wind, BSS, swell, visibility,
glare, boats small, boats medium, boats large, boats fishing, boats recreational, boats total,
boats industrial, capital dredging, maintenance dredging, rock dumping, and piling.
Unexplained temporal variation was modelled as three covariates: year-as-a-factor, time-of-
day (as a 6-degree spline), time-of-day with an interaction with year (as an 18-degree
bivariate spline), and julian-day-of-year (as a 6-degree spline) and julian-day-of-year (as an

18-degree bivariate spline).

Due to the large number of related/overlapping covariates, we performed multi-model
inference, capping the number of linear covariates at 3. We used the AIC to approximate
posterior-model probabilities (a.k.a, AIC-weights). The weights were used for two purposes:
i) to calculate model-averaged regression-coefficients/marginal-effects and frequentist p-
values for different covariates); and ii) for calculating the posterior inclusion probabilities
(a.k.a, sum-of-AlC weights). The former is for estimating effects-sizes and performing
significance tests, while the latter have a Bayesian interpretation: what is the probability that

covariate X is important for dolphins' presence/absence.

We also estimated the model-averaged time-series of dolphin probability of

occupancy (on the logit-scale) across years 2019, 2020, 2021, 2022, 2023 and 2024.

3. Results

3.1 Population demographics

3.1.1 Vessel based survey effort

We surveyed a total of 3053.8 km on transect effort over 18 days between June 1
and July 15, 2024, covering 1596.4 km in Cleveland Bay and 1457.5 km in Halifax Bay (Fig.
6, Table 2). Six survey repeats were completed in both bays from 2019 to 2021, seven in

2022 and 2023 and nine in 2024. Like last year, survey effort was higher in inshore areas



(2369.7 km) than in offshore areas (684.1 km) due to the poor weather conditions

encountered often in offshore areas (Beaufort sea state > 4).
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Figure 6. Map of survey area showing survey transects (solid black lines) and realized
survey effort (light blue to dark red) in Cleveland and Halifax Bay in June-July a) 2019, b)
2020, c) 2021, d) 2022, e) 2023 and f) 2024. Survey intensity scale represents the relative
number of times a transect was visited, as an approximate visual indicator of observational

intensity (for data-summary purposes only).
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Table 2: Summary of boat-based survey effort (total length of transects completed on effort)

and sea state conditions encountered in Cleveland Bay (CB) and Halifax Bay (HB) during

each complete survey (secondary period) in the 2024 primary sample (June-July).

Inshore | Offshore | Total Beaufort Sea
State
Study area | Sec. period | Dates Transect | Transect
Transect .
length (km) length length | min | max | mode
g (km) | (km)
1 01/06 144.8 50.7 195.5 0 3 1
2 05/06 133.3 1.4 134.7 0 3 3
3 11/06 144.8 35.7 180.5 0 3 1
4 15/06 144.8 54.1 198.9 0 3 1
Cleveland 5 17/06 139.1 55.5 194.6 0 3 1
Bay 6 19/06 144.8 36.8 181.6 0 3 1
7 01/07 144.8 43.7 188.5 0 3 2
8 12/07 144.8 31.1 175.9 0 3 2
9 14/07 144.8 1.4 146.2 1 3 1
Total - 1286.0 310.4 1596.4 - - -
1 04/06 114 .1 27.4 141.5 1 3 2
2 10/06 121.2 55.4 176.6 0 3 1
3 12/06 121.2 58.9 180.1 0 3 1
4 16/06 121.2 46.5 167.7 0 3 1
Halifax 5 18/06 121.2 22.7 143.9 1 3 2
Bay 6 20/06 121.2 62.0 183.2 0 3 1
7 02/07 121.2 47.0 168.2 1 3 2
8 13/07 121.2 17.5 138.7 0 3 2
9 15/07 121.2 36.4 157.6 1 3 2
Total - 1083.7 373.8 1457.5 - - -
Grand total - 2369.7 684.1 3053.8 - - -




3.1.2 Dolphin sightings, encounter rates and group sizes

The vessel surveys in 2024 resulted in a total of 112 dolphin group sightings
(including both on and off effort sightings) (Fig. 7f, Table 3). This consisted of 35 groups of
snubfin dolphins (Fig. 7f), 61 groups of humpback dolphins (Fig. 7I) and 16 groups of
bottlenose dolphins (Fig 7r). Other marine mammals sighted during 2024 surveys included
dugongs and humpback whales (Fig 7x). In 2024, we sighted a total of 9 groups of snubfin
dolphins in Cleveland Bay (0.0056 dolphin group/km), while 26 were sighted in in Halifax
Bay (0.0185 dolphin group/km). A total of 28 groups of humpback dolphins were sighted in
Cleveland Bay (0.0175 dolphin group/km) and 33 in Halifax Bay (0.0226 dolphin group/km)
(Table 3). Bottlenose dolphin groups were sighted 6 times in Cleveland Bay (0.0038 dolphin

group/km) and 10 times (0.0069 dolphin group/km) in Halifax Bay in 2024 (Table 3).

Encounter rates (number of dolphin groups/km) of snubfin dolphin groups in
Cleveland Bay showed interannual variability, with the highest encounter rates recorded in
2019 (0.0182 dolphin group/km) and the lowest in 2022 (0.0019 dolphin group/km) and 2023
(0.0016 dolphin group/km), followed by an increase in 2024 (0.0050 dolphin group/km).
Encounter rates in Halifax Bay also fluctuated over time, with similar values in 2019 (0.0193
dolphin group/km) and 2020 (0.0191dolphin group/km), a decrease in 2021 (0.0140 dolphin
group/km), increases in 2022 (0.0214 dolphin group/km) and 2023 (0.0270 dolphin

group/km), and a subsequent drop in 2024 (0.0178 dolphin group/km) (Table 3).

In Cleveland Bay, humpback dolphin encounter rates increased between 2019
(0.0139 dolphin group/km) and 2020 (0.0256 dolphin group/km), but then declined in 2021
(0.0219 dolphin group/km) and 2022 (0.0185 dolphin group/km), increased in 2023 (0.0211
dolphin group/km), followed by a decrease in 2024 (0.0175 dolphin group/km). In Halifax
Bay, encounter rates were highest in 2019 (0.0385 dolphin group/km), decreased in 2020

(0.0347 dolphin group/km) and 2021 (0.0162 dolphin group/km), rose again in 2022 (0.0259



dolphin group/km), then decreased in 2023 (0.0223 dolphin group/km) and remained similar

in 2024 (0.0226 dolphin group/km) (Table 3).

In Cleveland Bay, bottlenose dolphins were rarely recorded: encounter rates fell from
0.0032 dolphin group/km in 2019 to zero in 2020, increased in 2021 (0.0030 dolphin
group/km) and again in 2022 (0.0039 dolphin group/km), then dropped in 2023 (0.0016
dolphin group/km), and increased again in 2024 (0.0038 dolphin group/km). In Halifax Bay,
encounter rates decreased from 2019 (0.0024 dolphin group/km) to 2020 (0.0012 dolphin
group/km), increased in 2021 (0.0100 dolphin group/km), rose slightly in 2022 (0.0101
dolphin group/km), peaked in 2023 (0.0177 dolphin group/km), and decreased in 2024

(0.0069 dolphin group/km ) (Table 3).

Groups of humpback dolphins have been sighted in similar numbers in Cleveland
Bay (0.01 to 0.026 dolphin group/km) over the years; but have decreased in Halifax Bay

from 0.039 dolphin group/km in 2019 to 0.023 dolphin group/km in 2024 (Table 3).

Groups of snubfin dolphins in 2024 varied in size from 1 to 17 individuals, with a mean
(x SD) group size of 5.9 £ 4.1 (based on best estimates of group size) (Table 4). The group
size of humpback dolphins ranged from 1 to 35 individuals, with a mean (+ SD) group size
of 5.4 + 4.5. Bottlenose dolphin groups ranged from 2 to 14 individuals (mean + SD =5.7.

3.1) (Table 4).
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Figure 7. Location and group sizes of Australian snubfin dolphins (a-f), humpback dolphins (g-l),

bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020, 2021, 2022,

2023 and 2024 during boat surveys in Cleveland and Halifax Bays.
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g) Humpback dolphin sightings 2019. h) Humpback delphin sightings 2020.

k) Humpback dolphin sightings 2023. 1) Humpback dolphin sightings 2024.

Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-f), humpback

dolphins (g-1), bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020,

2021, 2022, 2023 and 2024 during boat surveys in Cleveland and Halifax Bays.
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-f), humpback

dolphins (g-1), bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020,

2021, 2022, 2023 and 2024 during boat surveys in Cleveland and Halifax Bays.
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-f), humpback

dolphins (g-1), bottlenose dolphins (m-r) and other marine mammals (s-x) sighted in 2019, 2020,

2021, 2022, 2023 and 2024 during boat surveys in Cleveland and Halifax Bays.
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Table 3. Number of groups (n) and encounter rate (total number of dolphin groups sighted

per km of transect surveyed) of snubfin, humpback and bottlenose dolphins in Cleveland

and Halifax Bays during 2019, 2020, 2021, 2022, 2023, and 2024 boat surveys.

Cleveland Bay Halifax Bay Total

Year Species Number of Number of Number of
n dolphin n dolphin n dolphin

groups/km groups/km groups/km
Snubfin 17 0.0182 16 0.0193 33 0.0187
2019 Humpback 13 0.0139 32 0.0385 45 0.0255
Bottlenose 3 0.0032 2 0.0024 5 0.0028
Snubfin 14 0.0138 16 0.0191 30 0.0162
2020 Humpback 26 0.0256 29 0.0347 55 0.0297
Bottlenose 0 0.0000 1 0.0012 1 0.0005
Snubfin 10 0.0100 14 0.0133 24 0.0117
2021 Humpback 22 0.0219 17 0.0162 39 0.0190
Bottlenose 3 0.0030 10 0.0095 13 0.0063
Snubfin 2 0.0019 19 0.0214 21 0.0110
2022 Humpback 19 0.0185 23 0.0259 42 0.0219
Bottlenose 4 0.0039 9 0.0101 13 0.0068
Snubfin 2 0.0016 29 0.0270 31 0.0134
2023 Humpback 26 0.0211 24 0.0223 50 0.0217
Bottlenose 2 0.0016 19 0.0177 21 0.0091
Snubfin 9 0.0056 26 0.0178 35 0.0115
2024 Humpback 28 0.0175 33 0.0226 61 0.0200
Bottlenose 6 0.0038 10 0.0069 16 0.0052




Table 4. Group size and age composition of snubfin, humpback and bottlenose dolphins
encountered during boat-based surveys in the Townsville region in 2019, 2020, 2021,

2022, 2023 and 2024.

Group size Group age composition
Mean proportion of
Year Species ] aduétasl;j;usvgzi)les, No.vgirtcr)‘ups
Min Max Mean (SD) juvenile or
A J c calf present
Snubfin 1 16 4.7 (3.6) 77 11 10 15 (45%)
2019 | Humpback | 1 30 5.18 (4.9) 77 11 10 28 (62%)
Bottlenose | 1 8 4.4 (2.6) 67 10 10 4 (80%)
Snubfin 1 20 4.7 (3.9) 83 6 10 ( 0%)
2020 | Humpback | 1 20 4.7 (4.1) 75 13 12 2 (58%)
Bottlenose | 3 3 3 (NA) NA NA NA 1 (100%)
Snubfin 1 12 4.1 (2.8) 81 10 8 13 (54%)
2021 | Humpback | 1 20 4 (3.6) 84 9 6 17 (43%)
Bottlenose | 1 10 3.5(2.3) 63 23 14 10 (77%)
Snubfin 1 26 4.6 (5.1) 83 6 11 6 (30%)
2022 | Humpback | 1 20 3.7 (2.8) 77 12 11 22 (52%)
Bottlenose | 1 16 4.9 (2.9) 76 20 4 9 (69%)
Snubfin 1 24 5.5 (4.4) 87 2 11 14 (45%)
2023 | Humpback | 1 25 3.9(3) 70 15 15 35 (70%)
Bottlenose | 1 15 5.3 (2.9) 75 13 12 15 (71%)
Snubfin 1 17 5.9 (4.1) 79 9 12 22 (63%)
2024 | Humpback | 1 35 5.4 (4.5) 71 16 13 42 (69%)
Bottlenose | 2 14 5.7 (3.1) 72 21 7 12 (75%)

3.1.3 Photo-identification and capture-recapture data
One hundred and forty-four individual snubfin and 240 individual humpback dolphins

have been identified since sampling began in 2019. Table 5 shows the numbers of snubfin



and humpback dolphins captured and first identified in each bay in each year. The total
numbers of each species captured and first captured in each year irrespective of the sites
in which they were captured are also shown. These totals are not always equal to the sums
of the numbers identified in each of the two bays. This is because some dolphins were
captured in both bays in the same years and are not counted twice in the totals. It is pertinent
to note that because a dolphin may have been first identified in a certain year should not be
taken to mean that they were not present in previous years only that, if they were present in
previous years, they were not captured. Captured or not, their numbers are represented in
the model estimates. In 2024, 25 individual snubfin and 49 humpback dolphins were photo-
identified in Cleveland Bay, and 52 snubfin and 84 humpback dolphins were photo-identified

in Halifax Bay (Table 5).

Table 5. Numbers of individual snubfin and humpback dolphins captured and first identified
in each bay in each year from 2019 to 2024. The total numbers captured and first identified

in each year irrespective of the sites on which they were captured are also shown.

Number captured/First captures

Species Bay 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Cleveland | 28/28 | 26/8 | 15/5 1/0 10/4 | 25/9

Snubfin | Halifax | 38/38 | 26/10 | 16/2 | 42/27 | 53/22 | 52/20
Total 57/57 | 4914 | 20/4 | 43/26 | 5517 | 65/26

Cleveland | 16/16 25/16 25/9 29/13 51/32 49/22
Humpback | Halifax 42/42 39/25 30/9 32/20 40/24 84/58
Total 54/54 56/30 51/12 58/29 82/46 119/69

Even though many of the dolphins first captured each year may have been present
but not captured in previous years, the relatively large numbers of snubfin dolphins first
captured in Halifax Bay and humpback dolphins first captured on both sites from 2022

onwards suggest that there may have been immigration to the area in the last three years.



The MSCRD analyses all data on each species captured in both bays in all six years.
Previous reports have demonstrated that no biases were introduced by the inclusion of off-
effort data. Thus, we use both on-effort and off-effort data for the MSCRD analyses of each
species. Good data for both bays in all six years are required for the model to return reliable
estimates for each species. This was not the case for snubfin dolphins in 2022 or 2023, with
only one having been captured in Cleveland Bay in 2022 and ten having been captured all
on one day in 2023. How these deficiencies were managed in the analysis is subsequently
discussed in detail. Considering the combined on- and off-effort data (Table 6) in the original
six secondary samples (PS_SS) data for both species, there were many zero or very low
numbers of captures in both bays in all years. Models using these data would return many

poorly or improperly estimated parameters, i.e., with large or zero standard errors.

An even number of secondary samples was planned in anticipation of small numbers
of captures being made to allow a strategy of collapsing each consecutive pair of secondary
samples into one (1&2=1, 3&4=2, 5&6=3) to increase the per secondary sample numbers
of captures (Table 6). However extra time was allocated for sampling to allow for days lost
due to poor weather and these days were used to complete further secondary samples as
the opportunity arose. This resulted in seven secondary samples being completed on both
sites in 2022 and 2023 and nine in 2024. The data were collapsed to three combined
secondary samples (PS_CS) for 2019 to 2021 (1&2=1, 3&4=2, 5&6=3), three combined
samples in 2022 and 2023 (5,6&7=3) and four combined samples in 2024 (8&9=4) for

MSCRD analyses of both dolphin species.



Table 6. Number of individual snubfin and humpback dolphins identified and number of captures by year, species, bay, on and off effort,
and secondary sample. PS_SS refers to the secondary samples (each composed of two complete transects on a site); PS_CS refers to
secondary samples as collapsed from PS SS (1&2=1;3&4=2;5,6&7=3;8 &9 =4).

. No. of PS_SS PS_CS
Year |  Species Bay Individuals identified Effort
s1 [ s2 | s3 | s4 | s5 | s6 s7 s8 s9 S1 | S2 | S3 | sS4
27 On only 8 3 9 0 12 6 NA | NA | NA | 11 9 13 | NA
Cleveland
Snubfi 28 On + off 8 3 9 1 12 6 NA | NA | NA | 11 15 | 13 | NA
nubfin
Halif 36 On only 13 1 11 0 12 | 10 | NA | NA | NA | 14 11 20 | NA
alifax
2019 38 On + off 13 1 11 2 12 | 10 | NA | NA | NA | 14 | 13 | 20 | NA
12 On only 3 3 9 3 0 0 NA | NA | NA 6 10 0 NA
Cleveland
16 On + off 3 3 10 5 5 0 NA | NA | NA 6 12 5 NA
Humpback
Halif 42 On only 4 19 1 10 9 17 | NA | NA | NA | 20 11 25 | NA
alifax
42 On + off 4 19 1 10 9 17 | NA | NA | NA | 20 11 25 | NA
26 On only 6 0 2 10 4 7 NA | NA | NA 6 11 11 NA
Cleveland
Snubfi 26 On + off 6 0 2 10 4 7 NA | NA | NA 6 11 11 NA
nubfin
Halif 26 On only 0 6 7 8 10 8 NA | NA | NA 6 15 | 18 | NA
alifax
2020 26 On + off 0 6 7 8 10 8 NA | NA | NA 6 15 | 18 | NA
25 On only 1 2 8 6 16 8 NA | NA | NA 3 11 20 | NA
Cleveland
25 On + off 1 2 8 6 16 8 NA | NA | NA 3 11 20 | NA
Humpback
Halif 39 On only 3 16 5 10 | 13 5 NA | NA| NA|[ 19| 14 | 18 | NA
alifax
39 On + off 3 16 5 10 | 13 5 NA | NA| NA|[ 19| 14 | 18 | NA
15 On only 4 7 1 1 3 0 NA [ NA | NA | 11 2 3 NA
Cleveland
Snubfi 15 On + off 4 7 1 1 3 0 NA [ NA | NA | 11 2 3 NA
nubfin
2021 Halit 16 On only 0 6 4 1 1 6 NA | NA | NA 6 5 7 NA
alifax
16 On + off 0 6 4 1 1 6 NA | NA | NA 6 5 7 NA
Humpback Cleveland 23 On only 1" 3 0 9 10 2 NA | NA | NA | 13 9 11 NA




. No. of PS_SS PS_CS
Year |  Species Bay Individuals identified Effort
s1 | s2 | s3 | s4 | sb| s6 | s7 s8 s9 S1|S2 | S3 | S4
25 On + off 1 3 0 9 10 7 NA | NA | NA | 13 9 14 | NA
Halif 29 On only 17 1 5 2 0 11 | NA | NA | NA | 18 7 11 NA
alifax
30 On + off 17 1 5 2 0 12 | NA | NA | NA | 18 7 12 | NA
1 On only 0 0 0 0 0 0 1 NA | NA 0 0 1 NA
Cleveland
1 On + off 0 0 0 0 1 0 1 NA | NA 0 0 1 NA
Snubfin
Halif 40 On only 0 4 12 1 13 | 13 4 NA | NA 4 13 | 25 | NA
alifax
2022 42 On + off 0 4 12 | 4 13 | 13 4 NA | NA 4 16 | 25 | NA
21 On only 0 0 16 6 3 2 3 NA | NA 0 19 6 NA
Cleveland
29 On + off 6 1 16 6 3 8 3 NA | NA 7 19 | 11 NA
Humpback
Halif 31 On only 0 2 0 9 4 14 8 NA | NA 2 9 22 | NA
alifax
32 On + off 3 2 0 9 4 14 8 NA | NA 4 9 22 | NA
10 On only 0 0 0 0 0 10 0 NA | NA 0 0 10 | NA
Cleveland
Snubfi 10 On + off 0 0 0 0 0 10 0 NA | NA 0 0 10 | NA
nubfin
Halif 40 On only 1 0 6 4 6 5 22 | NA | NA 1 10 | 33 | NA
alifax
2023 53 On + off 1 1 7 18 6 19 | 22 | NA | NA 2 20 | 41 | NA
47 On only 10 2 4 0 23 | 11 3 NA | NA | 10 4 36 | NA
Cleveland
51 On + off 11 2 6 9 23 | 16 3 NA | NA | 1 9 38 | NA
Humpback
Halif 30 On only 0 3 6 1 9 0 10 | NA | NA 3 15 | 17 | NA
alifax
40 On + off 0 4 8 11 9 7 11 NA | NA 4 17 | 24 | NA
14 On only 0 0 0 2 0 0 0 12 0 2 0 13
Cleveland
25 On + off 0 0 1 2 2 13 0 12 0 2 14 13
Snubfin
) 41 On only 1 12 | 13 | 14 5 16 0 6 12 | 25 | 17 10
2024 Halifax
52 On + off 10 | 15 | 13 | 24 5 16 4 6 12 18 | 33 | 21 16
40 On only 22 3 8 1 12 3 1 25 9 16 4
Humpback Cleveland
49 On +off | 22 3 9 9 14 | 12 3 19 | 25 | 12 | 22 19




Year

Species

No. of PS_SS PS_CS
Bay Individuals identified Effort
s1 | s2 | s3 | s4 | s5 | s6 | s7 s8 s9 | S1 | S2 | S3 | S4
Halifax 72 On only 0 | 15 10 (19| O 15 | 24 9 15 | 14 | 34 | 32
84 On + off 2 |15 11| 24 15 | 30 11 17 | 15 | 41 39




3.1.4 Goodness of fit

The goodness of fit test statistics from U-Care were, for the snubfin data y? = 8.562,
df =18.00, p =0.969 and, for the humpback data x%=19.297,df =22, p=
0.627 indicating no evidence of lack of fit between the models and the data for either species.
Consequently, no adjustment was made to ¢ (i.e., ¢ = 1) and AICc was used for model

comparisons.

3.1.5 Models

Capture probabilities were highly variable over years and secondary samples
(PS_CS) for both species and displayed no evident pattern for either. Consequently, capture
probability was fitted as fully time varying by year and secondary sample (PS_CS) in all
models except as described below. The apparent survival, movement and temporary
emigration parameters refer to the intervals between years (2019 to 2020, 2020 to 2021, ...,
2023 to 2024). In principle, separate estimates may be obtained for each interval. These
parameters were typically estimated with wide confidence intervals and were often fitted as
constant over intervals (yielding averages for the three intervals). This was a practical way
of obtaining useful and reasonably reliable estimates of meaningful parameters given limited

numbers of captures.

Exceptions to fitting the apparent survival, movement, and temporary emigration
parameters as constant over intervals were made in response to the near absence of snubfin
dolphins in Cleveland Bay in 2022 with only one having been captured, and limited captures
(10) in 2023 which all occurred on only one day. The approach to fitting these models is

described subsequently.

It is likely that very few snubfin dolphins visited the Bay during the sampling period in

2022, with very few sightings from either the vessel surveys (2 sightings) or land-based



surveys (one sighting). The absence of snubfin dolphins in Cleveland Bay in 2022, following
estimates of approximately 30-40 in previous years, may have been due to a decrease in
their apparent survival (due to deaths or permanent emigration from the Bay), an increase
in their rate of movement from Cleveland to Halifax Bay, or an increase in their temporary

emigration from the Townsville area (absent from both Cleveland and Halifax Bays).

While more snubfin dolphins were captured in Cleveland Bay in 2023 than 2022, that
they were all captured on only one day is problematic for the analysis. Since capture-
recapture models rely on recaptures across multiple sampling events to estimate population
size, the anomalous capture pattern in 2023 affects not only the 2023 estimates but also the
2022 estimates. If capture probability in 2023 was artificially inflated on one day, it could
lead to misleading estimates of survival and movement, making 2022’s population size
estimates unreliable as well. Capture-recapture models assume that, within a given season,
the population size remains relatively stable. However, if all captures in 2023 occurred on a
single day, it suggests that either: 1) The dolphins were not consistently present throughout
the season (i.e., temporary emigration), or 2) Sampling conditions or effort were significantly
different on that particular day compared to the rest of the season. Either scenario
contradicts the assumption of a constant number of dolphins in Cleveland Bay. If the high
number of captures in 2023 were due to a temporary aggregation event rather than a true
reflection of the population size, the model could overestimate the population for that year.
Conversely, if the model assumes that dolphins were equally available for capture
throughout the season, but in reality, they were not, then it could underestimate capture

probability and inflate the population estimate.

Although the global goodness of fit test found no evidence of lack of fit of the data to
the model, the pattern of captures in 2023 would be very unlikely to have occurred if the

assumptions of the model were met, notably that the number of snubfin dolphins in



Cleveland Bay was constant throughout the season. Consequently, not only are the

estimates for snubfin dolphins in 2022 suspect but so also are the estimates for 2023.

Although changes in the estimates of the apparent survival, movement, and
temporary emigration parameters in the MSCRD model might theoretically describe the
events underlying the changes in capture rates in 2022 and 2023 from those in 2019, 2020
and 2021, the capacity of the model to detect such changes as significant effects is limited
by the volume of data. There is very little information in the data for Cleveland Bay in 2022
with only one capture, and the information in the ten captures in 2023 is unreliable as

described above.

Captures were made on only one day in both 2022 and 2023, and no captures were
made in the first combined sample in 2024. The capture probability for the years 2022 and
2023 were modelled as having been constant over combined samples and constant over
the first two combined samples in 2024 to allow the models to run and estimates to be
produced. While estimates from models with the capture probabilities in Cleveland Bay
modelled as constant over secondary samples are reported here, the estimated numbers of
snubfin dolphins in Cleveland Bay in 2022 and 2023 are considered unreliable. As a check
on the bias involved, the best fitting model was refitted with the mean (= ~ 0.3) of the
estimated capture probabilities from 2019 to 2021 for snubfin dolphins in Cleveland Bay in
2022 and 2023. This model did not estimate the number for 2022 and returned one as the

number captured and estimated 13 snubfin dolphins in Cleveland Bay in 2023.

To obtain evidence of increased movement from Cleveland to Halifax Bay between
2021 and 2022, the rate of movement was fitted as equal between 2019 to 2020 and 2020
to 2021, different between 2021 and 2022 and zero between 2022 and 2023 (there was only
one to move and was not observed to do so). Movement between 2023 and 2024 was fitted

separately, as equal to the movement between 2019 and 2021 in another model and equal



to the movement between 2021 and 2022 in a third. In respect of movements in the other
direction, from Halifax Bay to Cleveland Bay, the rates were fitted as equal between 2019
to 2020 and 2020 to 2021, zero between 2021 and 2022 (only one was found in Cleveland
Bay in 2022) and different between 2022 and 2023. Movement between 2023 and 2024 was
fitted separately in one model and equal to the movements between 2019 and 2021 in
another. The best-fitting model had the movement between Cleveland and Halifax Bay
between 2023 and 2024 equal to the movement between 2021 and 2022 and the movement
between Halifax Bay and Cleveland Bay equal to the movements between 2019 and
2021.All attempts to model temporary emigration from either Bay for snubfin dolphins
produced estimates that were either very small with a large standard error or very large with
a standard error of zero indicating improper estimation. Consequently, temporary emigration
from both Bays was fixed at zero and not estimated in any model reported here. Subject to
the constraints described above, movements between sites were modelled as constant over
time and of even flow (equal in both directions), random (complementary between
directions) or Markovian (flows in the two directions independent) forms. Apparent survival
was fitted as constant over all years and both sites and separately as constant over years

within but different between sites. The final set for averaging included six models.

For humpback dolphins, apparent survival was fitted as equal or different for the two
sites, movement between sites was fitted as equal or different in both directions, and
temporary emigration was fitted as zero for Cleveland Bay and equal or different from and
to Halifax Bay. Even flow structures were clearly superior to random structures and only
these and the Markovian structures (different between directions) were included in the final

set of models. The final model set for averaging included six models.



3.1.6 Australia snubfin dolphin: population parameters 2019-2024
Five models fitted to the snubfin dolphin data were considered to have yielded reliable
estimates of all population parameters, except for abundance. Model averaged estimates of

the parameters are reported in Table 7.

The proportion of snubfin dolphins bearing distinctive marks was estimated at 0.90
with SE = 0.010. This was employed together with the estimated sizes of the marked
populations to calculate estimated total population sizes (Table 7). The total population sizes
are plotted with their 95% confidence intervals for Cleveland and Halifax Bays in each year
2019 to 2024 in Figure 8. The total estimated abundance of snubfin dolphins in Cleveland
Bay was reasonably consistent over the first three years of survey at 31 in 2019, 42 in 2020
and 34 in 2021 (Fig. 8). The estimated total abundance of snubfin dolphins in Cleveland Bay
in 2024 was 33, representing a return to an approximately pre 2022 number after the low
numbers in 2022 and 2023. In terms of the numbers of captures, there was a very large
decline in numbers in 2022 and a slight recovery in 2023, but as previously discussed, the
resulting abundance estimates for these two years (as shown in Table 7) are considered
unreliable (with wide confidence intervals) and are likely to be overestimated. A model that
assumed the probability of capture in these years was the same as the mean from the first
three years failed to yield an estimate for 2022 and estimated 13 for 2023. The estimated
total abundance of snubfin dolphins in Halifax Bay decreased from 56 in 2019 to 35 in 2020
and 31 in 2021 before increasing greatly to 111 in 2022 before falling to 73 in 2023 and 60

in 2024 (Table 7, Fig. 8).

Estimates for the average rate of apparent survival (alive and remaining in the bay)
of snubfin dolphins in the intervals between consecutive years between 2019 and 2024 were
very similar for the two bays at an average of 0.80 (95% Cl = 0.72 — 0.86). With an estimated

rate of biological survival of snubfin dolphins of 0.95 p.a. (Taylor et al. 2007), the estimated



rate of permanent emigration is 16% p.a., i.e., 16% have left each Bay, have not moved to

the other, and our modelling suggests they may not return.

The rate of movement (estimated probability of movement) between Cleveland Bay
and Halifax Bay between 2019 and 2020, and 2020 and 2021 was 0.14 (i.e. an estimated
14% of the dolphins moved from Cleveland Bay to Halifax Bay). This increased to 0.42
between 2021 and 2022 while movement out of Cleveland Bay could not be estimated
between 2022 and 2023 with only one dolphin captured in Cleveland Bay in 2022. The rate
of movement from Cleveland to Halifax Bay between 2023 and 2024 was similar to the rate
between 2021 and 2022 at 0.41 indicating that the relatively high rate of movement out of
Cleveland Bay has continued through to 2024. The rate of movement from Halifax Bay to
Cleveland Bay between 2019 and 2020, and 2020 and 2021 was greater than the rate of
movement in the other direction at 0.24.The rate of movement from Halifax Bay to Cleveland
Bay between 2021 and 2022 could not be estimated with only one dolphin captured in
Cleveland Bay in 2022, and the rate between 2022 and 2023 was very small, could not be
reliably estimated and was also fixed at zero. Movement between 2023 and 2024 returned
to the rate seen previously between 2019 and 2021 or slightly greater at 0.27. Although data
limitations have posed difficulties for estimation, these estimates provide evidence of
movement out of Cleveland to Halifax Bay in the year before 2022 and indicate that the rate
of return from Halifax to Cleveland Bay has returned to approximately the rate seen
previously between 2019 and 2021. The estimated probability of movement from Cleveland
Bay to Halifax Bay was 0.41 between 2023 and 2024, consistent with the 2021-2022
estimate, indicating continued high emigration from Cleveland Bay through 2024. In
contrast, the probability of movement from Halifax Bay to Cleveland Bay was 0.27 during

the same period, returning to levels observed between 2019 and 2021.



The capacity of the models to estimate temporary emigration was severely limited by
the very small numbers present in Cleveland Bay in 2022 and 2023 and relatively small
numbers of captures generally. It was not possible to estimate temporary emigration from
and to Halifax Bay, and the estimates for temporary emigration from and to Cleveland Bay

were very small and fixed at zero to facilitate reliable estimation of other parameters.



Table 7. Australian snubfin dolphin: Multistate Closed Robust Design (MSCRD) model averaged
estimates of population parameters, their standard errors (SE) and 95% confidence intervals (lower
and upper limits) for Cleveland Bay (CB) and Halifax Bay (HB). All estimates are probabilities

per individual of relevant species, except population sizes.

Parameter*® Bay Year Estimate SE LCI UCl
Apparent survival (¢) CB 2019-2024 0.80 0.04 0.72 | 0.86
Apparent survival (¢) HB 2019-2024 0.79 0.03 0.72 | 0.85
2019-2020 0.14 0.06 0.05 | 0.31
2020-2021 0.14 0.06 0.05 | 0.31
Movement between sites (yMS) CBtoHB 2021-2022 0.42 0.1 0.23 | 0.63
2022-2023 0.00 0.00 0.00 | 0.00
2023-2024 0.41 0.12 0.21 | 0.64
2019-2020 0.24 0.07 0.13 | 0.40
2020-2021 0.24 0.07 0.13 | 0.40
Movement between sites (yMS) HB to CB 2021-2022 NIL (fixed) NA NA NA
2022-2023 NIL (fixed) NA NA NA
2023-2024 0.27 0.09 0.12 | 0.49
CB 2019-2024 NIL (fixed) NA NA NA
Temporary emigration from (WTE)
HB 2019-2024 NIL (fixed) NA NA NA
2019 28 3.42 22 35
2020 37 7.44 23 52
2021 31 9.08 13 49
Marked population size (Nmarked) CB
2022 13 * (See text) 18.34 | -23 49
2023 24 * (See text) 1175 |1 47
2024 30 9.34 12 48
2019 50 9.53 32 69
2020 32 3.72 24 39
Marked population size (Nmarked) HB 2021 28 783 9 8
2022 100 2140 |58 142
2023 65 8.14 50 81
2024 54 3.43 47 60
2019 31 3.81 25 40
2020 41 8.28 28 61
2021 34 10.10 | 20 60
Total population size (Ntotar) cB 2022 14 * (See text) 20.38 | 2 113
2023 27 * (See text) 13.06 | 11 66
2024 33 10.38 | 18 61

HB 2019 56 10.61 | 39 81




Parameter* Bay Year Estimate SE LCI UClI
2020 35 4.15 28 44
2021 31 8.71 18 53
2022 111 2381 |73 168
2023 73 9.08 57 93
2024 60 3.87 52 68
*Parameters:

.

* These estimates are considered unreliable. See text.

Nmarked: €stimate of the “marked” population size.

Niotai: €stimate of the total population size considering proportion of unmarked animals in the population.

@: estimate of apparent survival.

wws: estimate of transition probability/movement between sites.

yre: estimate of temporary emigration.
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Figure 8. Estimates of the total population size of Australian snubfin dolphins with 95%

confidence intervals in Cleveland (CB) and Halifax Bays (HB) for the years 2019 to 2024.

The estimates for Cleveland Bay in 2022 and 2023 are considered unreliable (*) and are

likely overestimated (see text).

3.1.7 Australian humpback dolphin: population parameters 2019-2024.

Six models for the humpback data were considered to have yielded reliable estimates

of all parameters. Model averaged estimates of the parameters are reported in Table 8.

The proportion of humpback dolphins bearing distinctive marks was estimated at 0.88
with SE = 0.009. This was employed together with the estimated sizes of the marked
populations to estimate total population sizes (Table 8). The total population sizes are
plotted with their 95% confidence intervals for Cleveland and Halifax Bays for the years 2019
to 2024 in Figure 9. The number of humpback dolphins present in Cleveland Bay increased

from 20 in 2019 to 32 in 2020 and 2021 and increased again to 48 in 2022 and 81 in 2023

but declined slightly to 68 in 2024 (Fig. 9).



There were more humpback dolphins present in Halifax Bay than Cleveland Bay in
all years, with 66 in 2019, 53 in 2020, 45 in 2021, 80 in 2022, 87 in 2023 and 122 in 2024
(Fig. 9, Table 8). It appears that as suggested from the relatively large numbers of humpback
dolphins first identified in both bays in the last three years (Table 5) that there may have
been immigration into both bays in these years and to Halifax Bay between 2023 and 2024

in particular.

Estimates for the average rate of apparent survival (alive and remaining in the bay)
in the intervals between consecutive years between 2019 and 2024 were the same for both
bays at 0.80 p.a. (Table 8). With an estimated rate of biological survival of humpback
dolphins of 0.97 p.a., the estimated rate of permanent emigration was 17.5% p.a. from both
bays. This is a quite high rate of permanent emigration but one that has been more than
balanced by immigration in recent years indicating substantial connectivity between the

Townsville humpback dolphin populations and populations elsewhere.

The average rates of movement between the Bays in the intervals between
consecutive years between 2019 and 2024 were approximately equal in both directions at
an average of 0.21 p.a. (Table 8). That is a substantial proportion (21%) in the context of
ecological and demographic processes of small populations, especially for species like
dolphins that often show strong site fidelity. Estimates of temporary emigration from each
Bay differed at zero for Cleveland Bay and at 0.27 p.a. for Halifax Bay; suggesting that while
all humpback dolphins present in Cleveland Bay during one sampling season were
estimated to also be present in the next, about 27% of humpback dolphins present in one
sampling season in Halifax Bay were absent for the duration of the next. Return of previously
emigrated humpback dolphins to a Bay was estimated at zero for Cleveland Bay and at 0.53
p.a. for Halifax Bay. These rates of temporary emigration from and return to Halifax Bay may

be part of a flow of humpback dolphins between Halifax Bay and another population nearby.



Table 8. Australian humpback dolphins: Multistate Closed Robust Design (MSCRD) model
averaged estimates of population parameters, their standard errors (SE) and 95%
confidence intervals (lower and upper limits) for Cleveland Bay (CB) and Halifax Bay (HB).

All estimates are probabilities per individual of relevant species, except population sizes.

Parameter* Bay Year Estimate | SE LCI UClI
Apparent survival (@) CB 2019-2024 0.80 0.04 0.72 | 0.87
Apparent survival HB 2019-2024 0.80 0.04 0.72 | 0.87
CBtoHB | 2019-2024 | 0.22 0.04 0.15 | 0.30
Movement between sites (Wws)
HBto CB | 2019-2024 | 0.20 0.03 0.14 | 0.27
CB 2019-2024 | 0.00 0.00 0.00 | 0.00
Temporary emigration from (Wre)
HB 2019-2024 | 0.27 0.07 0.15 | 0.43
CB 2019-2024 | 0.00 0.00 0.00 | 0.00
Return of previously emigrated dolphins to (wrE)
HB 2019-2024 | 0.53 0.24 0.15 | 0.88
CB 2019 17 2.07 13.43 | 21.56
CB 2020 17 2.07 13 22
CB 2021 28 4.04 20 36
CB 2022 28 3.38 21 34
CB 2023 41 6.69 28 54
CB 2024 70 9.87 50 89
Marked population size (Nmarked)
HB 2019 57 9.60 38 76
HB 2020 46 6.62 33 59
HB 2021 39 6.07 27 51
HB 2022 69 18.35 | 33 105
HB 2023 75 17.60 | 40 109
HB 2024 105 10.09 | 86 125
CB 2019 20 2.42 16 26
CB 2020 32 4.71 24 43
CB 2021 32 3.94 26 41
CB 2022 48 7.80 35 66
CB 2023 81 11.51 | 62 107
CB 2024 68 7.95 |54 85
Total population size (Notal)
HB 2019 66 11.19 | 47 92
HB 2020 53 772 |40 71
HB 2021 45 7.07 33 61
HB 2022 80 21.36 | 48 134
HB 2023 87 20.49 | 55 137
HB 2024 122 11.80 | 101 148

*Parameters:
. Nmarked: €stimate of the “marked” population size.



. Niwtai:estimate of the total population size taking into account proportion of unmarked animals in the
population.

. @: estimate of apparent survival.
. Wwus: estimate of transition probability/movement between sites.
. wre: estimate of temporary emigration.
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Figure 9. Estimates of total population size with 95% confidence intervals of Australian

humpback dolphins in Cleveland (CB) and Halifax Bays (HB) for the years 2019 to 2024.



3.2 Spatial distribution modelling

3.2.1 Model performance and spatial predictions

In 2024, 35 encounters with groups of snubfin dolphins and 61 encounters with
groups of humpback dolphins were recorded. The number of points representing the
pseudo-zeros for the snubfin dolphins SDM was 1003 and 977 for the SDM of humpback

dolphins.

Overall, the final ensemble models for generating species distribution plots for 2024
had good predictive performance. Humpback dolphin’s model had slightly lower
performance in comparison to 2023, whereas the snubfin model had better performance.
The ensemble model for humpback dolphins obtained a global cv-ROC-AUC of 0.820 (lower
than the 2023 value of 0.833 and the 2022 value of 0.840) and a cv-precision-recall-AUC of
0.342 (lower than the previous two-years values of 0.38 and 0.462, respectively). For snubfin
dolphins, the global cv-ROC-AUC was 0.860 (higher slightly than the previous two years’
values of 0.853 and 0.833); the cv-precision-recall-AUC was 0.278 (compared to the

previous two years’ values of 0.300 and 0.217).

The per-year predictive performance (cv-ROC-AUC) for humpback dolphins, using
the 2023 ensemble model, were 0.884, 0.929, 0.805, 0.785, 0.733, and 0.784, for survey-
years 2019 through to 2024, respectively. This suggests that earlier years (2019-2021,
especially 2020) had better predictive performance than latter years (2022-2024). The per-
year predictive performance for snubfin dolphins, using the 2023 ensemble model, were
0.898, 0.919, 0.779, 0.821, 0.829, 0.879, for survey-years 2019 through to 2024,
respectively. Similar to the humpback model, the 2020 survey year had the strongest

predictive performance, but 2021 had the lowest predictability.



3.2.2 Relative Variable Importance

For snubfin dolphins, the order of RVIs was: an unexplained spatial process (30.9%),
log-distance to seagrass meadows (10.7%), depth (9.8%), log-distance to river (9.5%), log-
distance to land (8.4%), log-distance to the foreshore (5.3%), log-distance to reefs (4.9%),
year as a categorical variable (3.1%), SST (2.7%), counts of large boats (2.6%), counts of
industrial boats (2.2%), salinity (2.0%), log-distance to rock-dumping (1.34%), time-of-day

(1.14%), and turbidity (0.9%) (Fig. 10a) .

For humpback dolphins, the most important explanatory variable was the flexible
spatial base-learners, representing unexplained spatial variation, and accounted for 29% of
risk-minimisation (Fig. 10b). Thereafter, the most important variables were log-log-distance
to land (22%), then log-distance to rivers (16%), depth (9.0%), SST (8.4%), year as a
categorical variable (2.9%), counts of large boats (1.58%), counts of all boats (1.24%), time-
of-day (1.03%), log-distance to seagrass meadows (0.77%), counts of small boats (0.75%),
swell (0.68%), log-distance to maintenance dredging (0.58%). All covariates thereafter had
RVIs of less than 0.5%. Compared to the 2023 humpback RVIs, most of the top covariates
had similar percentages and ordering. However, the 2023 model attributed a 0.8% RVI to

distance to maintenance dredging.

Unlike the humpback models, the ordering and percentages of snubfin RVIs in 2024
were somewhat different as compared to the 2023 RVIs. For instance, the top 5 covariates
in 2023 were: unexplained spatial process (45%), distance to rivers (12%), depth (9.9%),
distance to land (6.6%), distance to foreshore (5.3%). It is noteworthy that the 2024 snubfin
model had more variation explained by named environmental predictors and temporal
variables, rather than an unexplained spatial processes. This corresponds to a much better
predictive performance for the 2024 model (cv-ROC of 0.860 vs 0.833 in 2023), suggesting

that the inferences from the 2024 RVIs may be more trustworthy than previous models. It is



also noteworthy that whereas the 2023 snubfin model allocated a relatively high RVI to the
covariate representing distance to maintenance dredging (2.5%), this covariate was not
important in the 2024 model, but was replaced by a higher importance of rock-dumping

(1.34%).

For both species, the human-related covariates, such as counts of boats, seemed to
have systematic and measurable effects, but whose contributions are relatively small
(<<5%) compared to other environmental predictors. Furthermore, the distribution-related
covariates (like maintenance dredging) received lower RVIs in 2024 despite having modest
RVIs in 2023. It could be that, for past-years’ analyses, the effect of disturbance is more
pronounced given its proportionally higher-share of the data, whereas the addition of post-

disturbance data from 2024, swamps their weak by natural variation.

As mentioned in past reports, the presence of multi-collinearity among
covariates means that it is difficult to uniquely assign RVI to any one particular covariate
(Buhimann et al. 2013)., especially when there is a highly flexible non-linear spatial spline
that can act as a “catch-all” representation of the spatial variation that would otherwise be

more causally related to other interpretable covariates.
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Figure 10. The relative variable importance (contribution to risk-minimisation) of each

covariate considered in ensemble species distribution modelling of a) Australian snubfin and

b) humpback dolphins based on data collected in 2024.
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3.2.3 Likelihood Ratio Tests Disturbance Covariates

We performed a 5-fold cross-validation to compare the CV-likelihood of the base-
model versus a reduced model that dropped the five disturbance covariates (distance to
pilings, distance to dumping, distance to capital dredging, distance to maintenance dredging,
and minimum distance to any disturbance covariate). Note that, within this set of covariates,
only maintenance dredging is classified as a non-CU activity. Likelihood ratios above 1
indicate support for the reduced model without the disturbance covariates, whereas ratios

below 1 indicate support for the full model that includes the disturbance covariates.

For snubfin dolphins, the CV-likelihood ratio was 1.6x10-24<<1, supporting the
full model that included disturbance variables. The relative variable importance (RVI)
analysis suggests that distance to rock-dumping was most strongly associated with model
fit, with distance to maintenance dredging also contributing (RVI = 0.8%), both showing

positive associations with snubfin dolphin distribution.

For humpback dolphins, the CV-likelihood ratio was 1.0x10-3° <<1, also supporting
the full model that included disturbance variables. The analysis suggest that maintenance
dredging was the disturbance variable most strongly associated with the model outcomes,

indicating a positive relationship with humpback dolphin occurrence.

3.2.4 Covariate Two-Way Interaction Partial Plots

We made partial plots of two-way interactions between pairs of covariates and the
marginal predicted density, after marginalizing-out the contributions of the flexible spatial
base-learners (i.e., as visualised in the SDM maps) (Fig. 11). Such partial plots help to
visualise the complex influence of covariates on species’ abundance. We used two-way

interaction plots because of inherent interactive nature of the underlying machine-learning



method, in which the relationship between predictors and response variables may change

as a function of other variables, and so cannot be perceived independently.

There are too many plots to present here (they are available upon request).
Instead, we subjectively describe the functional relationships simple as large increase,
moderate increase, small increase, small decrease, moderate decrease, and large

decrease, in additional to any other notes.

Snubfin Functional Relationships with Covariates (2024)

e Distance to seagrass meadows: large increase (i.e., species density increased further
away from seagrass meadows).

e Depth: large decrease (i.e., species density decreased in deeper waters), however,
it depended on other covariates, and in many cases showed a non-linear concave-
up pattern.

e Distance to river: large decrease (i.e., species density decreased at further distances
from rivers), non-monotonic, with a slight concave-down peak at small distances, and
whose effect was especially pronounced in the presence of boats.

e Distance to land: moderately concave-down effect (i.e., inverted u-shape), with a
pronounced peak occurring a mid-distances.

e Distance to the foreshore: small decrease (i.e., species density decreased as
distance increased) with a slight concave-down peak at moderate distances, and
declining further away.

e SST. moderately-small decrease (i.e., higher temperatures had lower species
density), but also often with a pronounced concave-down profile, whereby species
density peaked at middle temperatures, and declined rapidly at cooler temperatures,

and a shallower decline at higher temperatures.



e Distance to reefs: small increase (i.e., as the distance from reefs increased, the
species density increased).

e Counts of industrial boats: small increase (i.e., the species density increased as the
counts of boats increased).

e Distance to rock-dumping: small decrease, non-linear (i.e, the species density
decreased further away from the rock-dumping).

e Counts of large boats: small increase.

e Salinity: small decrease.

e Time-of-day/hour: small concave-up shape, such that there were higher species
densities during earlier hours, followed by a decrease, and then a large rise in the

late survey hours.

Humpback Dolphins Functional Relationships with Covariates (2024):

e Distance to land: strong increase (i.e., species density increased as the distance from
land increased), non-linear, whereby most of the increase happened at the furthest
distances from land.

e Distance to rivers: strong decrease (i.e., species density declined with increasing
distance from rivers), non-linear with a sigmoidal shape.

e Depth: moderate decrease (i.e. species density decreased in deeper waters), highly
non-linear, with a flat response in mid-to-shallow waters followed by large decreases
in deep waters.

e SST:. moderate increase.

e Counts of large boats: moderate increase.

e Counts of all boats: moderately small increase.



e Time-of-day/hour: moderately small concave-up non-linear effect (i.e., high species
density occurred during the early and late survey hours, with lower density in
between).

e Distance to seagrass meadows: small increase, but varied according to other
covariates (e.g., there was a declining-relationship when paired with dredging, but a
positive-relationship when paired with swell).

e Counts of small boats: small decrease.

e Swell: small increase

e Distance to maintenance dredging (Year 3) small decrease.

The reader should note that the relationships could change under multi-way interactions and

different years.
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Figure 11. Examples of two-way partial plots for humpbacks (top) and snubfin (bottom)
predicted marginal density, where the x-axes are two interacting covariates, and the y-axis
is marginal density. Notice the different colour-coded scales of the y-axis, per plot. The x-

axis have been mean-centred and re-scaled to unit variance.

3.2.5 Plots and Summaries of Spatially Varying SDM Components
The spatial partial plots of snubfin and humpback dolphins across the survey area
are shown in Figures 12 and 13 respectively. These plots show three series: the probability

of occurrence per year (Figs. 12a-f and 13a-f), the conditional group size (i.e., the size of an
84



encounter, if a group is present) per year (Figs. 12g-l and 13g-l), and relative density per
year (Figs. 12m-r and 13m-r). The first two components (occupancy and conditional counts),
constitute the zero-inflated Poisson bivariate distribution. The third series, the relative
density, is the probability of occupancy multiplied by the conditional counts per year. Note
that the influence of temporal covariates (time-of-day, day-of-year) and environmental
conditions (swell, BSS, glare, visibility) have been removed by conditioning the plots on the
global averages of temporal-covariates. For those years in which a log-distance-to-
disturbance was present (like distance-to-TSHD or distance-to-rock dumping), the SDM the

model is conditioned on the disturbance being present.

Snubfin dolphin occurrence and relative density showed significant yearly variation,
with a sharp decline in Cleveland Bay occupancy in 2022 and no dolphins estimated there
in 2023.The 2024 predictions of spatial occurrence of snubfin dolphins (Fig 12f) and their
relative density (Fig 12r) were more similar to the 2019 pattern, in which there was a higher
relative concentration of snubfins along the south-western nearshore of Cleveland Bay
around the Port of Townsville, and the south-eastern nearshore of Halifax Bay, and almost

no presence and densities in offshore waters.

The predictions of humpback dolphin occurrence and relative density across all years
are very similar in overall pattern, except for some differences in some areas of punctuated
densities. Across all years, there was high occupancy (Fig. 13a-f) and density (Fig 13m-r)
to the north and to the east of Port of Townsville, along the shore of Cleveland Bay, as well
as a large expanse of high-occupancy and density between Toolakea beach and Cape
Pallarenda along the shore of Halifax Bay. Unlike snubfins, humpbacks were consistently
present in Cleveland Bay in all years, particularly around the Port Townsville and to the east
of the port (Fig 13a-f). In 2024 the spatial patterns of density in Cleveland and Halifax Bays

exhibit a similar pattern t to 2023, but with a higher overall density (Fig. 13m-r). For instance,



whereas a diffuse cloud of relatively high density enveloping the nearshore of Port of
Townsville in 2023, for 2024 this is also predicted to have a singular point of very high
densities to the east of Port of Townsville. Also, in the eastern nearshore region of Cleveland
Bay, the 2024 SDM suggests there is also a singular point of very high density in 2024 (and
in 2021), whereas in 2023 this was a more diffused region of moderately high density. This
could be due to an increased confidence as more data is accumulated over the years,

resulting in less “shrinkage” towards zero (i.e., models without a lot of data).
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Figure 12. Spatial partial plots of Australia snubfin dolphins from ensemble-modelling of species
distribution across the survey area based on data collected in 2019, 2020, 2021, 2022, 2023 and
2024: (a-f) shows how the probability of dolphins’ presence/absence varies spatially over the
study area, (g-1) shows how expected group size varies spatially (conditional on being present),
and (m-r) shows the relative density function of dolphins across the bays.
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Figure 12 (continued). Spatial partial plots of Australia snubfin dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020,
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies
spatially over the study area, (g-1) shows how expected group size varies spatially (conditional on
being present), and (m-r) shows the relative density function of dolphins across the bays.
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Figure 12 (continued). Spatial partial plots of Australia snubfin dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020,
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies
spatially over the study area, (g-I) shows how expected group size varies spatially (conditional on
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being present), and (m-r) shows the relative density function of dolphins across the bays.
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Figure 13. Spatial partial plots of Australia humpback dolphins from ensemble-modelling of
species distribution across the survey area based on data collected in 2019, 2020, 2021, 2022,
2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies spatially
over the study area, (g-1) shows how expected group size varies spatially (conditional on being
present), and (m-r) shows the relative density function of dolphins across the bays.
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Figure 13 (continued). Spatial partial plots of Australia humpback dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020,
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies
spatially over the study area, (g-1) shows how expected group size varies spatially (conditional on
being present), and (m-r) shows the relative density function of dolphins across the bays.
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Figure 13 (continued). Spatial partial plots of Australia humpback dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020,
2021, 2022, 2023 and 2024: (a-f) shows how the probability of dolphins’ presence/absence varies
spatially over the study area, (g-I) shows how expected group size varies spatially (conditional on
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being present), and (m-r) shows the relative density function of dolphins across the bays.



Regarding the decomposition of the expected counts into its occupancy and
conditional group-size components, there were some interesting contrasts between species.
For humpbacks, the conditional group-size exhibited erratic spatial-variation across the
offshore regions, especially in 2020, 2021 and 2022 (Fig. 13g-1). Group-sizes in 2022 were
high around the Port of Townsville (northeast and southeast of port, Fig. 13j), and small
between Port of Townsville and Magnetic Island, both locations being in the vicinity where

capital dredging occurred.

For snubfins, the occupancy component was roughly in-line with the expected
counts, and was clearly the dominant component, whereas the conditional group-size
component was more uniform across space. Two exceptional areas of very high (shown in
red) conditional group-size were: i) to the west of Magnetic Island on the nearshore
boundary between Cleveland and Halifax Bays; and ii) between Port Townsville and
Magnetic Island., in the vicinity of capital dredging and piling activities (both of which were

present in 2022).

For snubfins, Table 9a shows the average predicted values (for predicted occupancy
and expected) across years, strata (Cleveland Bay vs. Halifax Bay), and inshore waters vs.
offshore waters. Table 9b shows the same for humpback dolphins. For snubfin dolphins, the
2024 values showed a pattern of being high in the inshore waters, and low in the offshore
waters. For instance, whereas the relative density of snubfins in Halifax Bay’s and Cleveland
Bay’s inshore waters were higher than the respective values in 2019, 2020, 2022, and 2023,

the offshore values were the lowest in the time series.

For humpbacks, the 2024 fields obtained values for occupancy and relative density

that were in-line with past years’ values for most strata, and for some waters, were much



higher. For instance, in the inshore waters of Cleveland Bay, the mean relative densities
were predicted to be the highest areas all years, attaining a 64% premium over the 2019
pre-construction baseline. In contrast, the offshore waters of Halifax Bay had the highest
mean relative densities across all years. The fact that such high-rankings for 2024 were not
also shown in the expected occupancies (which were close to median values over the time-

series), suggest that it was the group-size which drove the overall higher relative densities.



Table 9. Summaries of a) snubfin dolphins and b) humpback dolphins predicted occupancy

and relative density, by strata and year.

a) Snubfin dolphins

Expected Occupancy Expected Counts

Halifax Bay Cleveland Bay Halifax Bay Cleveland Bay

Year | inshore | offshore | inshore | offshore | inshore | offshore | inshore | offshore

2019 | 0.051 0.012 0.050 0.013 0.475 0.108 0.396 0.015

2020 | 0.021 0.004 0.026 0.013 0.324 0.051 0.347 0.014

2021 | 0.087 0.011 0.056 0.007 2.457 0.487 0.723 0.012

2022 | 0.109 0.005 0.021 0.013 0.629 0.031 0.130 0.013

2023 | 0.084 0.016 0.010 0.010 0.444 0.072 0.021 0.013

2024 | 0.074 0.003 0.057 0.006 0.727 0.029 0.531 0.007

b) Humpback dolphins

Expected Occupancy Expected Counts

Halifax Bay Cleveland Bay Halifax Bay Cleveland Bay

Year | inshore | offshore | inshore | offshore | inshore | offshore | inshore | offshore

2019 0.29 0.23 0.23 0.08 1.41 0.53 0.89 0.09

2020 0.1 0.08 0.07 0.03 0.6 0.17 0.37 0.02

2021 0.16 0.12 0.13 0.05 1.59 1.2 1.28 0.3

2022 0.2 0.13 0.13 0.05 1.22 0.88 1.01 0.12

2023 0.17 0.13 0.13 0.05 0.51 0.39 0.34 0.1

2024 0.19 0.13 0.11 0.02 1.1 0.94 1.46 0.13

3.3  Patterns of attendance to the port area

3.3.1 Land based survey effort

During the 2024 field season, there were 12 days of land-based surveys, conducted
between June 4th and June 18th. There was a total of 766 scans (compared to 870 scans
in 2019, 948 in 2020, 1533 in 2021, 1490 scans in 2022, and 1164 scans in 2023 Table 10).
The lower number of scans in 2024 was due to land-based observations being restricted to
a short window from June 4 to 18, as Berth 11 was closed from June 19 to August 1 for

scheduled shipping activities and essential maintenance on the ship loader. Despite the



fewer number of scans, there were many more humpbacks and snubfins observed from the
land-based station as compared to previous years: humpbacks were observed on 11 of the
12 survey-days; snubfins were observed on 5 days (compared to 0 in 2023 and 1 in 2022).

As in previous years, no bottlenose dolphins were seen in 2024.

Table 10. Survey effort and dolphins observed from Berth 11 at the Port of Townsville

during June 2024. BSS= Beaufort Sea State at which observations were conducted.

Number of Number Number of
scans with of scans scans with
Number with BSS | BSS | BSS
Date humpback . bottlenose .
of scans . snubfin . min | Mode | Max
dolphins . dolphins
dolphins
present present
present
4/06/2024 64 0 0 0 0 2 3
5/06/2024 64 1 0 0 1 1 1
6/06/2024 64 2 0 0 1 1 2
7/06/2024 64 4 0 0 0 1 3
8/06/2024 64 11 0 0 1 1 4
10/06/2024 64 16 2 0 1 1 4
11/06/2024 66 3 0 0 0 1 4
12/06/2024 64 4 1 0 0 1 3
14/06/2024 62 3 0 0 0 1 3
15/06/2024 62 2 6 0 0 1 3
17/06/2024 64 7 1 0 1 1 3
18/06/2024 64 7 2 0 1 1 4
Total 766 60 12 0

3.3.2 Overall difference in dolphin occurrence between years

For humpbacks dolphins, all the Bayesian p-values that compared the 2024 scans
versus survey-years 2019 through to 2023 were close to 1.0 (Table 11), i.e., the number of
encounters of humpback dolphins were in line (or greater) than the expectations of previous
years. This was driven by a large number of scans with humpbacks and fewer overall scans

than in previous survey years (i.e., large numerator and smaller denominator).



For snubfin dolphins, the 2024 survey year yielded a relatively high number of snubfin
observations as compared to the previous two survey years, in which there were one or no
snubfins. However, the Bayesian p-values for 2019 (baseline) and 2020 were close to zero,
and the 2021 p-value was intermediate (Table 11). This suggests that encounters of snubfin
dolphins were higher around the port in earlier years (2019-2020), declined into 2022 and

2023, and then returned in 2024 to values similar to the 2021 year.



Table 11. Comparison of dolphin occurrences between 2024 and all other years and

corresponding Bayesian P-values.

a) 2019-2024

N occurrences of
Species Year | Number of Scans Bayesian P-value
dolphins
2019 867 49
Snubfin 0
2024 766 12
2019 867 19
Humpback 1
2024 766 60
b) 2020-2024
N occurrences of
Species Year | Number of Scans Bayesian P-value
dolphins
2020 948 34
Snubfin 0.004
2024 766 12
2020 948 7
Humpback 1
2024 766 60
c) 2021-2024
N occurrences of
Species Year | Number of Scans Bayesian P-value
dolphins
2021 1533 27
Snubfin 0.36
2024 766 12
2021 1533 32
Humpback 1
2024 766 60




d) 2022-2024

N occurrences of
Species Year | Number of Scans Bayesian P-value
dolphins
2022 1490 1
Snubfin 1
2024 766 12
2022 1490 65
Humpback 1
2024 766 60
e) 2023-2024
N Occurrences of
Species Year N Scans Bayesian P-value
Dolphins
2023 1164 0 1
Snubfins
2024 766 12 1
2023 1164 53 1
Humpbacks
2024 766 60 1




3.3.3 Diel and behavioural patterns observed

Among the behaviours observed for snubfin dolphins in 2024, travelling was the most
common (67%), followed by foraging (17%), with no other behaviours observed (Table 12).
This is not surprising given the low number (n =6) of snubfin dolphin groups observed in
2024. Foraging was observed only in the late afternoon, and all other time-periods consisted
of travelling (Fig. 14a). Across all survey years, the composition of snubfin behaviours was
more erratic than for humpbacks, e.g., in the early survey years (2019-2021) foraging was
the dominant behaviour, followed by travelling and/or socialising, which contrasts with 2024.
The all-year pooled behavioural composition showed more regularity in behaviours across
time-intervals, such that foraging was the dominant behaviour across all time intervals,
followed by travelling, then socialising, and resting occurring more rarely (Fig. 15a) The
majority of snubfin dolphin groups across years were sighted during the morning and early

afternoon (06:00-13:00) (Fig 15a).

In 2024, humpback dolphins were mainly observed foraging (39%; Table 12),
followed by travelling (32%), then socialising (25%). These behaviours were especially
dominant in the morning between 9:00 am to 11:00 am (Fig. 14b). While the proportion of
foraging in 2024 is low, it still remains the most common activity observed, both in that year
and across the full dataset. The composition of behaviours was relatively stable across the
latter survey years, with more erratic ordering of behaviours in the early years, e.g., in years
2020 and 2021, socialising was the second-most common behaviour after foraging. Figure
15b shows the all-year pooled summaries of behaviours, which shows more consistency in
behaviours across time-intervals (i.e., each time-interval showed a consistent ordering of
behaviours whereby foraging was the most common, followed by travelling, and then
socialising. The majority of humpback dolphin groups across years were sighted during the

morning and early afternoon (06:00-13:00) (Fig 15a).



Table 12. The total number of scans where either species was present (and behaviour could
be determined) during land-station surveys from 2019 to 2024, and the proportion of times
they were observed engaged in foraging, resting, socializing, and travelling behavior. The

aggregated numbers for all survey years (“pooled”) are also shown below.

Number of
Species Year Scans with Foraging | Resting [Socialising| Travelling
Species
Present
2019 47 0.62 0.02 0.04 0.32
2020 29 0.97 0.03 0.00 0.00
2021 24 0.54 0.00 0.25 0.21
Snubfin 2022 1 0.00 0.00 0.00 1.00
2023 0 0 0 0 0
2024 6 0.17 0 0 0.67
Pooled 107 0.66 0.02 0.08 0.23
2019 18 0.50 0.00 0.00 0.50
2020 7 0.71 0.00 0.29 0.00
2021 29 0.52 0.00 0.31 0.17
Humpback| 2022 59 0.44 0.02 0.15 0.39
2023 52 0.48 0.04 0.08 0.4
2024 44 0.39 0 0.25 0.32
Pooled 209 0.46 0.01 0.17 0.34

* Note: discrepancies in counts with other tables due to NA in behaviours
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Figure 14. a) Australian snubfin and b) humpback dolphin observations by time of day (2-3
hourly bins) in 2024. Bar height represents densities of counts (number of dolphin’s groups
seen divided by number of scans); bar compositions represent proportion time observed in

various behaviours.
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Figure 15. Pooled observations (2019 to 2024 inclusive) of a) snubfin and b) humpback
dolphins by time of day (2-3 hourly bins). Bar height represents densities of counts (number
of dolphin groups seen divided by number of scans); bar compositions represent proportion

time observed in various behaviours.
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3.3.4 Dolphins’ patterns of occurrence in relation to boats, capital dredging, maintenance
dredging and rock dumping

Boats

Among snubfin dolphins, there were too sparse observations in 2024 to discern a
pattern: with less than 3boats all snubfins were observed travelling, at 3 boats they were
observed foraging (Fig. 16a). When pooling all snubfin observations across all survey years,
no consistent pattern emerges (Fig. 17a). Overall, there may have been a slight decrease
in the number of snubfin dolphins with increasing number of boats, and a decreasing

tendency to forage.

The presence and behavioural activity of humpback dolphins observed from Berth 11
changed as the number of boats increased (Fig 16b). In 2024, humpback dolphin counts
tended to increase with increasing number of boats, and they tended to increase their
proportion of time travelling (although all behaviours recorded in 2024 were observed across
all counts of boats). However, in 2023, an opposite trend was observed, whereby fewer
humpbacks were observed with more boats present, and foraging decreased concomitantly.
When considering all years of data pooled together (Fig.17b), no consistent pattern emerges
in behavioural composition nor total counts. It is possible that foraging behavior diminished

in response to increased boat activity, while traveling behavior became more prevalent.
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Figure 16. Counts of a) snubfin and b) humpback dolphins groups observed and their
behaviours, stratified by the number of boats present, for the 2024 survey-year. Bar height

represents densities of counts (humber of dolphin groups seen divided by number of scans).
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Figure 17. Pooled observations (2019 to 2024 inclusive) of counts of a) snubfin and
b) humpback dolphins groups observed and their behaviours, stratified by the number of
boats present. Bar height represents densities of counts (number of dolphin groups seen

divided by number of scans).
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Dredging

As in the 2023 analysis, we pooled all years and used the absence of dredging (of all
types) as the null-model to calculate Bayesian p-values. 2024 was a post-construction
survey-year, in which there were no additional observations of dredging. Therefore, all land-
based observations of snubfin and humpbacks in 2024 merely add to the presumed null-

distribution of occupancy (i.e., no capital or maintenance dredging present or active).

For capital dredging, we further analysed the data based on whether the dredging
was active (when dredging operations were ongoing) vs. inactive(when dredging vessel was
present but not in operation), as well as present (dredging vessel is in the area regardless

of active or inactive) vs. not present (no dredging vessel was in the area) (Table 13).

Over 6 years of field study, there were a total of 21 scans in which maintenance
dredging was present, 1327 scans in which capital dredging was present, and 858 scans in

which capital dredging was present and active.

The humpbacks had very high Bayesian p-values for all types of dredging (p = 0.95)
(Table 13). Therefore, their presence/absence patterns were in-line with the no-dredging
null model, and it may even suggest a positive affinity. For snubfin dolphins, the p-values
were high for maintenance dredging (0.99), but very low for capital dredging presence
(0.000) and capital dredging activity (0.000), indicating that capital dredging resulted in
snubfin counts that were very out-of-line with the no-dredging null-model. Therefore,
maintenance dredging was not associated with noticeable changes in the presence or
absence of snubfin dolphins around the port area, whereas capital dredging coincided with

variations in their occurrence.



Table 13. Land-based observations of Australian snubfin and humpback dolphins during a)
maintenance dredging with trailing suction hopper dredger (TSHD); b) presence of capital

dredging with backhoe dredger (BHD) versus periods with no dredging (of all types); and c)

active versus inactive/non-presence of capital dredging, across all survey years.

a)
. Mamten_ance Number of | Number of Scans with .
Species Dredging * . Bayesian P-value
(TSHD) Scans Dolphins Present
, no 5444 120
Snubfin 0.99
yes 21 2
no 5444 136
Humpback 0.9
yes 21 1
b)
. Caplt_al Number of | Number of Scans with .
Species dredging * . Bayesian P-value
(BHD) Scans Dolphins Present
, no 5465 122
Snubfin 0
yes 1327 1
no 5465 137
Humpback 1
yes 1327 101
c)
Species d?:g'tiﬁl Number of | Number of Scans with Bavesian P-value
P (BHgD)g Scans* Dolphins Present y
not 5934 122
Snubfin |present/inactive 0
active 858 1
not 5034 178
Humpback|Present/inactive 1
active 858 60

* For the two types of dredging, the number of scans does not add up to the total number of scans, because

of the treatments/sets. For presence and absence counts for capital dredging, we excluded from the "no




dredging" treatment both types of dredging (both maintenance and capital dredging), and likewise for the
maintenance dredging. We excluded from the "no dredging" treatment both types of dredging (both
maintenance and capital dredging). This was done to remove any confounding effect in the "no dredging"

treatment where another type of dredging occurred.

Rock-Dumping

There were no additional incidences of rock dumping in 2024. All 401 scans in which
rock dumping occurred happened in 2020. Therefore, our conclusions are the same as

reported previously.

The Bayesian p-value was very high for snubfins (>0.999), suggesting that the
presence of snubfins was not out-of-line with the expectations of the non-rock dumping null
model, and there may even have been a positive affinity (Table 14). The p-value was very
low for humpback dolphins, given that exactly 0 humpbacks were encountered during
dumping (Table 14). Therefore, the presence or absence of snubfin dolphins around the port
area did not show a clear association with rock dumping, whereas patterns in humpback

dolphin occurrence appeared to coincide with this activity.

Piling Activities

There was no additional piling activity in 2024. The additional non-piling scans add to
the null-distribution. All 9 scans in which piling occurred were from 2022. There were no
observed snubfin or humpback dolphins during any of the 9 piling scans. While this may
seem dramatic, due to the few occurrences of piling, the lack of dolphins was actually in-line
with the null-model expectations, such that the Bayesian p-values were high (0.72 — 0.844)
(Table 15). It is important to recognize that with only 9 piling events, the statistical power to
detect small to moderate effects is low. However, that does not invalidate the finding—

rather, it emphasizes that the absence of dolphins during piling is not inconsistent with the



null expectation. It does not prove there is no effect, but suggests the data do not provide

evidence of an effect, given current sample size.

Table 14. Land-based observations of snubfin and humpback dolphins during rock dumping

and non-rock dumping construction activities across all survey-years (2019-2024).

. Rocl.(- Number of | Number of Scans with .
Species Dumping . Bayesian P-value
Scans Dolphins Present
Present
, no 6390 103
Snubfin 1
yes 401 20
no 6390 238
Humpback 0
yes 401 0

Table 15. Land-based observations of snubfin and humpback dolphins during piling and

non-pilling activities across all survey years.

Species | Piling Active Number of | Number of Scans with Bayesian P-value
Scans Dolphins Present
Snubfin no 6783 123 0.84
yes 9 0
no 6783 238 0.72
H back
umpbac yes 9 0




3.3.5 GAM regression of dolphin presence/absence in relation to environmental predictors
and anthropogenic disturbances (capital dredging, maintenance dredging rock dumping,

and piling)

The multi-model GAM exercise for the land-station data inference resulted in 8451
different models with different combinations of covariates, the same as in the 2023 report.
For snubfin and humpback dolphins, there was a lot of multi-model uncertainty, especially
for snubfin dolphins. In other words, there were a lot of low probability models, including the

top models.

For snubfin dolphins, the top model had 1.7% of the AlC-weights, and included

covariates:

. glare

. activity of capital dredging (BHD) (dredging vessel was present and
active)

. year as a categorical variable

. spline (time-of-day x year)

. spline (julian-day-of-year x year)

Of the linear covariates of the best model, only glare was deemed statistically
significant according to naive p-values. The non-model-averaged coefficients glare was
positive, suggesting that increased glare was positively associated with occupancy by

snubfin dolphins.

For humpbacks, the top model had 24.0% of the AlIC-weights. It included covariates:

. BSS

. counts of all boats (total boats)



. presence of capital dredging (BHD) (regardless if was active or not)

. year as a categorical variable
. spline (time-of-day x year)
. spline (julian-day-of-year x year)

All the linear covariates of the best model were deemed statistically significant
according to naive p-values (i.e., non-model-averaged p-values). The non-model-averaged
coefficients of boats and capital dredging were positive, suggesting that increased presence
of boats and increased presence of capital dredging were positively associated with

increased occupancy by humpbacks.

Due to the high model uncertainty, our primary means of inference was primarily
based on model-averaging, such as interpreting the posterior inclusions probabilities (Table
16) to rank the importance of covariates, and the model-averaged coefficients and p-values

(Table 17) to interpret effect magnitude and direction and statistical significance.

For snubfin dolphins, all the temporal covariates had inclusion probabilities greater
than 0.99 The environmental covariate with the largest inclusion probability was glare with
0.88, activity of capital dredging with an inclusion probability of just 0.15, then counts of
small boats with an inclusion probability of 0.145, then counts of fishing boats with an
inclusion probability of 0.12, then recreational boats and medium-sized boats with an

inclusion probability of 0.11, each. All other covariates had inclusion probabilities below 0.1.

For humpback dolphins, the highest posterior probabilities (greater than 0.99, or 99%
inclusion) were obtained by four covariates, including: all the temporal covariates (hour-of-
day, Julian day-of-year, year-as-a-categorical variable), and the presence of capital
dredging. The next largest component was BSS with an inclusion probability of 0.64, then

counts of all boats (total boats) with an inclusion probability of 0.365, then recreational boats



with an inclusion probability of 0.25, then small boats with an inclusion probability of 0.22.

All other covariates had inclusion probabilities below 0.1.

Table 16. Model-averaged sum of AIC-weights (aka approximate posterior inclusion
probabilities) for covariates predicting the presence/absence of dolphins at land-stations.

Inclusion probabilities greater than 0.5 are shown in bold.

Covariate Humpbacks | Snubfins
wind 0.04 0.05
BSS 0.64 0.04
swell 0.06 0.09
visibility 0.07 0.09
glare 0.05 0.88
time-of-day/hour 1 1
julian-day-of-year 1 1
year as categorical variable |1 1
boats small 0.22 0.15
boats medium 0.05 0.11
boats large 0.09 0.06
boats fishing 0.05 0.12
boats recreational 0.25 0.11
boats total 0.37 0.12
boats industrial 0.04 0.06
o By
capital dredging (BHD) active |0 0.15
maintenance dredging (TSHD) |0 0.04
rock dumping 0 0.06
piling 0 0.04
aggregate disturbance 0 0.05




Table 17 shows the estimate of standardised regression coefficients (mean-centred
and scaled to unit-variance, i.e., 1 unit change in logit-probability of dolphin presence per
unit of the coefficient). The coefficients were model-averaged over top models with highest

posterior weights.

For snubfin dolphins, many of the models suffered from singularities and infinities in
the MLE variance-covariance matrix (such as the capital dredging and piling covariates),
likely due to the paucity of snubfins presence during capital dredging activities. As remedy,
we truncation the individual models’ coefficients to have an absolute logit-value of at most
50, thereby stabilising the model-averaging process (because a single low-probability model
can explode the model-averaged estimates if its coefficient is extreme). The only statistically
significant model-averaged effect was due to glare, such that more glare was associated

with higher odds of detecting snubfins.

For humpback dolphins, there was only one (non-temporal) covariate that had a
statistically significant model-averaged coefficient: capital dredging (BHD) presence. It had
a high positive covariate, suggesting a positive association between the presence of capital
dredging and occurrence of humpback dolphins. The next most-significant covariate was
BSS with a p-value of 0.238, with a negative coefficient. All the other disturbance covariates
had coefficients estimated to be exactly 0 because their posterior inclusion probabilities were

approximately zero.



Table 17. Model-averaged and standardised regression effects from an ensemble of GAMs for predicting dolphin presence at land observation

stations.

Covariate Mean S.E. Ig_g':zg: gg,zgrl P-value Mean S.E. |Lower 95%CI ;"5%231 P-value
wind 0 0.03 0 0 0.96 0 0.03 -0.04 0 0.91
BSS -0.19 0.17 -0.47 0 0.24 -0.01 0.04 -0.06 0 0.89
swell -0.01 0.05 -0.2 0 0.83 0.01 0.04 0 0.12 0.89
visibility 690.84 Inf -Inf Inf 1 -0.01 0.03 -0.1 0 0.87
glare 0.01 0.04 0 0.14 0.84 0.25 0.1 0 0.44 0.02
boats small 0.03 0.07 0 0.24 0.65 0.02 0.05 0 0.19 0.76
boats medium 0 0.02 0 0.05 0.9 0.01 0.04 0 0.13 0.84
boats large 0.01 0.05 0 0.19 0.81 0 0.03 -0.02 0 0.97
boats fishing 0 0.02 -0.06 0 0.89 0.01 0.05 0 0.17 0.79
boats recreational 0.04 0.08 0 0.24 0.61 0.01 0.04 0 0.14 0.83
boats total 0.07 0.1 0 0.3 0.5 0.01 0.05 0 0.19 0.8
boats industrial 0 0.03 0 0 0.99 0.01 0.05 0 0.1 0.92
capital dredging 0.76 0.12 0.54 1 0 008 | 925 .25 28.06 0.99
presence

capita) dredging 0 0 0 0 i 008 | 1441 | -40.99 40.97 1
(’;}2‘(;‘;?:;”"6 0 0 0 0 ; 0 0.01 -0.01 0 0.94
rock dumping 0 0 0 0 - 0.01 0.05 0 0.18 0.82
piling* 0 0 0 0 - -0.08 6.73 0 0 0.99
aggregate disturbance 0 0 0 0 - 0.01 0.05 0 0.2 0.85

* truncated effects on logit scale to a maximum absolute logit of -50 or 50.




Regarding interannual differences at the land-station, Table 18 shows the model-
averaged estimated per-year effect (on the logit scale). These per-year-effects, do not
include the positive and negative contributions of covariates that may systematically vary by
year (such as certain disturbances), meaning that the presence or absence of such affects
can adjust the per-year aggregate effects. For snubfin dolphins, the only years with reliable
model-averaged per-year effects were 2019 (-3.16, SE: 0.48; 95%Cl:-4.09 - -2.21), 2021 (-
4.34, SE: 0.26; 95%CI: -4.85 - -3.83), and 2024 (-2.24; SE: 0.75; 95%Cl: -3.73 - -0.79),
whereas other years, like 2023, had little or no observations of snubfins. 2024 had a much
higher estimate per-year effect, with strongly non-overlapping 95%CI from 2021. This
suggests that the snubfins occupancy was as great or greater than in previous years,

including the baseline year.

For humpback dolphins, the model-averaged point-wise estimates showed a lot of
interannual variability, such that high-years were followed by low-years, etc. The point-wise
estimates were highest for 2024 (-1.246), followed by 2021 (-3.88), then the pre-construction
baseline of 2019 (-3.94), then 2020 (-5.02), then 2023 (-5.521); finally, 2022 had the lowest
point-wise coefficient for humpbacks, with a value of -5.693. However, almost all of the
model-averaged 95%Cls were overlapping, with the exception of 2023 (-6.498, -4.652)
versus 2019 (-4.448, -3.435) and 2021 (-4.27, -3.496), suggesting that 2023 was
systematically lower than others. Notice the very large 95%CI for 2024 (-1.246, SE: 7.244;
95%Cl:-15.88 — 12.959), suggesting its ranking to be less confident; it was also the year

with least number of scans.



Table18. Model-averaged time-series of per-year-effects on humpback and snubfin

dolphin probability of occupancy (on the logit-scale) around the Port of Townsville.

Snubfin Humpback
Year| Mean S.E. ;50;:3 gg,zg Mean S.E. ;50;:3 gg,zg
2019| -3.16 0.48 -4.09 -2.21 -3.94 0.26 -4.45 -3.44
2020| -17.31 | 12.44 | -41.09 6.18 -5.02 0.41 -5.77 -4.2
2021 -4.34 0.26 -4.85 -3.83 -3.88 0.2 -4.27 -3.5
2022 -7.05 17.69 | -41.54 44.83 -5.69 0.88 -7.46 -3.96
2023 -Inf Inf NA NA -5.52 0.48 -6.5 -4.65
2024 | -2.24 0.75 -3.73 -0.79 -1.25 7.24 -15.88 12.96




4. Discussion and conclusions

It is important to emphasize that the observed correlations between dolphin
occurrence and port construction activities do not necessarily indicate direct causation. The
abundance and distribution of dolphins in Cleveland and Halifax Bays, as well as their
presence near the port area, may also be influenced by various extrinsic factors, such as
climatic variability, competition with other species, or dispersal limitations, as well as intrinsic
factors like dietary preferences and habitat specialization. These variables, which were not
directly assessed in this study, could independently or interactively affect the presence of
snubfin and humpback dolphins in the monitored regions. Nonetheless, the marked
interspecific differences observed in population dynamics, spatial distribution, and
occurrence patterns over the monitoring period raises the possibility of a link between
anthropogenic disturbances and shifts in snubfin dolphin abundance, behaviour, and habitat
use. For snubfin dolphins, these changes—including a decline in abundance and reduced
use of Cleveland Bay in 2022 and 2023, followed by a rebound in 2024—closely align with

the timing of CU construction activities and its subsequent cessation.

4.1 Survey effort

The 2024 (post-construction) vessel surveys of inshore dolphins for the Port of
Townsville proceeded well. We were able to carry out nine full surveys of Cleveland and

Halifax Bay between June-July.

4.2 Estimates of abundance, survival, emigration, and movement

Snubfin dolphins
Due to the limited number of encounters and thus individual captures of snubfin

dolphins in Cleveland Bay in 2022 (n =1) and 2023 (n =10) adjustments to the Multistate



Closed Robust Design model (as mentioned in results section) had to be made to allow
estimation of population parameters. Therefore, the abundance estimates for snubfin
dolphins in Cleveland Bay for 2022 and 2023 should be interpreted with caution, as they are
likely overestimated due to the limited number of captures available in both years (see
results). The abundance estimates of snubfin dolphins in Cleveland Bay during the first three
survey years (2019-2021) indicated a relatively stable population of 30—40 individuals. This
was followed by a substantial decline in 2022 and 2023, and a recovery to pre-2022 numbers
in 2024. Despite data limitations in 2022 and 2023, our results suggest that the sharp decline
in snubfin dolphins in Cleveland Bay was primarily due to an increase in their movement to
Halifax Bay before 2022. In 2024, the return rate from Halifax to Cleveland Bay has since
rebounded to levels observed in 2019-2021. The high estimated biological survival rate
(0.95) of snubfin dolphins further supports the conclusion that the observed decline was not

due to mortality.

The return of snubfin dolphins to numbers similar to those observed in 2019, the
baseline year, suggests that the population changes recorded in 2022 and 2023 may have
been temporary changes rather than indicative of long-term population declines. This
recovery could imply that the snubfin population is resilient to certain stressors, such as
habitat disturbances or resource availability shifts, provided these pressures are mitigated
or removed over time. The observed trends underscore the importance of minimizing
environmental and anthropogenic stressors in important habitats and maintaining
connectivity between adjacent areas like Cleveland and Halifax Bays, which may provide

refuge and support population resilience.

The temporary nature of the observed changes may reflect short-term behavioral responses,
such as displacement to alternative habitats, rather than lasting demographic impacts like

reduced reproduction or survival rates. For instance, snubfins may have shifted to Halifax



Bay during periods that coincided with peak construction activities or other environmental
changes in Cleveland Bay, with their subsequent return aligning with reduced disturbance
levels or improved habitat conditions. While the data do not allow for direct attribution, this
pattern aligns with a potential behavioral response to changing local conditions. Comparable
temporal associations have been documented in Australian humpback dolphins in Port
Curtis-Gladstone, within the southern Great Barrier Reef region, where a decline in female
abundance coincided with the onset of port development, followed by a return to previous
levels after construction concluded (Cagnazzi et al. 2020). While these patterns may seem
encouraging, they should not dismiss the potential cumulative impacts of repeated or
prolonged disturbances, which could exceed the population's adaptive capacity. Long-term
monitoring is critical to understanding whether this recovery represents a full return to
ecological stability or if the population remains vulnerable to recurring or intensifying

pressures.

As indicated in previous report, although our research does not prove what caused
the decrease in snubfin dolphin abundance in Cleveland Bay in 2022-2023 in comparison to
previous years, it suggests disturbance from port construction activities as a potential
explanation. The decline in snubfin dolphin abundance in Cleveland Bay during 2022 and
2023 may result from various extrinsic (e.g., climate, competition, dispersal) and intrinsic
factors (e.g., prey abundance, habitat specialization) not accounted for in this study and for
which there is no data availabe. However, the decrease in abundance in 2022 and 2023 and
increased movement of snubfins from Cleveland to Halifax Bay coincided with capital
dredging and piling activities associated with CU project; and followed the completion of the
rock wall construction for the 62-ha port reclamation area at the eastern end of the Port in
2021. Such activities have been associated with declines in dolphin abundance in other
areas (Jefferson et al. 2009, Dungan et al. 2011, Brooks and Pollock 2015, Pirotta et al.

2013, Cagnazzi et al. 2020). For example, significant declines in Australian humpback



dolphins were observed in Port Curtis-Gladstone after extensive dredging and land
reclamation (Cagnazzi et al. 2020). The number of humpback dolphins present in Darwin
Harbour showed a steady decline during periods coinciding with pile driving associated with
the Ichthys LNG Project (Brooks and Pollock 2015). Dredging caused common bottlenose
dolphins (Tursiops truncatus), to spend less time in Aberdeen harbour (Scotland), despite
high baseline levels of disturbance and the importance of the area as a foraging patch

(Pirotta et al. 2013)

In contrast to Cleveland Bay, snubfin dolphin numbers increased significantly in
Halifax Bay during 2022, 2023 and 2024 due to movements from Cleveland Bay and
immigration from outside the study area. Many snubfin dolphins identified in Halifax Bay from
2022 onwards were likely new immigrants, as indicated by the relatively large number of
individuals first captured in the bay during this period. This suggests that, in addition to the
movement of animals from Cleveland Bay to Halifax Bay, there may have been immigration
into the area over the past three years, reflecting connectivity between local populations in
Cleveland Bay, Halifax Bay, and adjacent regions. Halifax Bay may have offered comparable
or improved habitat quality relative to Cleveland Bay during the period of observed change,
which coincided with capital dredging and piling activities associated with CU project; and
followed the completion of the rock wall construction for the 62-ha port reclamation area at
the eastern end of the Port in 2021. We acknowledge that this temporal alignment does not
demonstrate that the CU Project caused the increase, but given the overlap in timing, it is

appropriate to note the coincidence as part of the discussion of potential contributing factors.

If prey availability, water quality, or acoustic conditions were more favourable,
dolphins may have been attracted to Halifax Bay, not only from Cleveland Bay but also from
adjacent coastal regions (e.g., further north), particularly if those areas experienced

environmental disturbances such as cyclones, habitat degradation, or shifts in prey



distribution that triggered broader redistribution. It is also possible that the observed
movements of snubfin dolphins from Cleveland Bay to Halifax Bay facilitated additional
immigration from outside the study area. Social attraction, conspecific cues, and perceived
habitat suitability may have drawn individuals from neighbouring regions, contributing to the
significant increase in dolphin abundance in Halifax Bay between 2022 and 2024. This
connectivity suggests demographic and genetic links between subpopulations in the region,
consistent with similar immigration events observed in Bynoe Harbor, Northern Territory

(Brooks et al. 2017).

Humpback dolphins

Abundance estimates over the past six years indicate an increasing trend in
humpback dolphin numbers in both Cleveland and Halifax Bays during the last three years
(2022-2024), with higher abundance consistently observed in Halifax Bay compared to
Cleveland Bay since monitoring began in 2019. The increasing abundance of humpback
dolphins in Cleveland and Halifax Bays, particularly the consistently higher numbers in
Halifax Bay, reflects the ecological significance of this region for the Townsville population.
Halifax Bay's larger fraction of the population could be attributed to its ecological
characteristics, such as prey availability, habitat quality, or lower levels of anthropogenic
disturbance compared to Cleveland Bay. Such differences in habitat suitability underscore

the critical role of spatial heterogeneity in supporting local dolphin populations (Parra 2006).

Several ecological and behavioural mechanisms may explain the increasing trend in
abundance of humpback dolphins in Cleveland Bay in contrast to snubfin dolphins. First,
humpback dolphins may possess behavioural flexibility that allows them to exploit
anthropogenically altered environments more effectively than other species. For instance,
construction activities and modified coastal features may lead to localized prey aggregation,

such as schooling fish or invertebrates attracted to increased turbidity or nutrient runoff,



enhancing foraging opportunities for these opportunistic predators. Second, built structures
like seawalls, jetties, and pilings can serve as artificial reefs, attracting prey species and
creating foraging hotspots. Humpback dolphins have been observed using such structures
to herd fish or concentrate prey, effectively enhancing their feeding efficiency in areas where
natural features may have been diminished. These modified habitats may inadvertently
benefit dolphins by concentrating prey in accessible zones. Third, the observed increase
may also reflect a competitive release following the decline of sympatric snubfin dolphins.
As snubfin dolphins vacate or reduce their use of key habitats in Cleveland Bay, resources
such as prey and space may become more readily available to humpback dolphins, allowing
them to expand their range and increase their residency or site fidelity in the area. In addition,
humpback dolphins may exhibit stronger tolerance or habituation to anthropogenic noise
and activity compared to snubfin dolphins, which are known to be more sensitive to
disturbance. This differential tolerance could facilitate the displacement of snubfins and the

subsequent occupation of disturbed areas by humpbacks.

The high biological survival rate estimated for Cleveland and Halifax Bays (0.97 p.a.)
aligns with values reported for other healthy dolphin populations (Cenci et al. 2011,
McDonald et al. 2017, Jaakkola and Willis 2019), suggesting that humpback dolphins in the
study area are not experiencing severe mortality pressures from environmental variability or
anthropogenic impacts. Together with the increasing abundance, this demographic
robustness suggests that despite facing potential threats—such as port development,
increased human activities, or environmental changes—the dolphins are adapting well,
showing no immediate signs of population-level declines or elevated mortality. However, this
does not preclude the need for continued monitoring to ensure the population remains

resilient in the face of ongoing or increasing pressures.



The observed movement rates between Cleveland and Halifax Bays (0.21 p.a.) and
the substantial permanent emigration rate (0.17 p.a.) highlight the dynamic nature of
humpback dolphin distribution in this region. The high connectivity between these bays and
with populations beyond the study area supports genetic assessments indicating that
humpback dolphins in the Townsville region form part of a broader metapopulation structure
(Parra et al. 2018). Such connectivity facilitates genetic exchange, enhances population

viability, and allows dolphins to exploit resources across a mosaic of habitats.

Halifax Bay's higher temporary emigration and return rates compared to Cleveland
Bay provide further evidence of its role as a hub within this interconnected network. The
frequent movement of individuals in and out of Halifax Bay suggests linkages with nearby
populations, possibly driven by seasonal shifts in prey distribution or habitat conditions. This
level of connectivity underscores the importance of Halifax Bay in sustaining regional

population dynamics.

4.3 Spatial distribution

The spatial distribution patterns of humpback dolphins in Cleveland Bay and Halifax
Bay have exhibited consistency during the past six years of monitoring. The spatial
distribution of snubfin dolphins showed consistent use of similar areas with some significant

changes in 2022-2023, and a return to pre-2022 space use patterns in 2024.

Overall, both humpback and snubfin dolphins seem to favour approximately three
core areas: i) to the west, around and to the east of the Port of Townsuville in Cleveland Bay;
and ii) the central coastal waters between Cape Pallarenda/Bohle River and Toolakea, and
i) the northern inshore areas off and west of Toomulla in Halifax Bay. Humpback dolphins
also seem to inhabit some offshore areas in Halifax Bay, and occasionally occupy nearshore

areas in the northeast of Magnetic Island.



The consistency in the spatial distribution patterns of humpback dolphins in Cleveland
Bay and Halifax Bay over six years reflects their strong fidelity to specific habitats, a well-
documented trait for this species (Parra 2006, Parra et al. 2006a, Meager et al. 2018). Such
spatial consistency suggests that these bays provide essential ecological resources within
their home range, including foraging opportunities, shelter, and suitable conditions for social

interactions and reproduction.

The spatial distribution patterns of snubfin dolphins, characterized by consistent use
of similar areas but with significant shifts in 2022—2023 and a return to pre-2022 patterns in
2024, provide key insights into their ecological flexibility and responses to environmental
and anthropogenic changes. The observed shifts in 2022—-2023 coincide with changes in
abundance and movement patterns, as indicated by capture-recapture modelling. The
increased abundance of snubfin dolphins in Halifax Bay and higher movement rates from
Cleveland Bay to Halifax Bay before 2022 suggest a redistribution of individuals within the
region. Marine dredging activities can result in both temporary and long-term alterations of
habitats, impacting the overall ecological dynamics of marine ecosystems (see reviews in
Erftemeijer et al. 2012, Wenger et al. 2017, Borland et al. 2022, Eke et al. 2023). These
impacts stem from various mechanisms, including physical alterations of the seabed,
introduction of noise pollution, and changes in species composition. Pile driving, a common
component of marine construction, generates significant underwater noise that has the
potential to produce physiological and/or behavioural effects on fish (Popper et al. 2013,
Casper et al. 2016) and marine mammals (David 2006, Brandt et al. 2011, Kastelein et al.
2013, Dahl et al. 2014). Such disturbance can elicit both short-term responses, such as
temporary avoidance, altered vocal behaviour, or changes in dive patterns, and longer-term
effects when exposure is repeated, prolonged, or intense enough to influence habitat use,
movement patterns, or energetic budgets (Brandt et al. 2012, Kastelein et al. 2013, Graham

et al. 2017, Clement et al. 2025). Both dredging and pile driving can lead to behavioral



changes in marine mammals, including avoidance of affected areas (Pirotta et al. 2013,
Graham et al. 2017, Leunissen et al. 2019, Fang et al. 2023).The decrease in the occurrence
and abundance of snubfin dolphins in Cleveland Bay in 2022 and 2023 could have been
driven by changes in habitat conditions, prey availability, or disturbance levels in Cleveland

Bay, possibly linked to construction activities for the CU project, including dredging and

piling.

The return of snubfin dolphins to pre-2022 space use patterns in 2024, along with
movement rates comparable to those observed in 2019-2021, suggest that the stressor(s)
that may have contributed to their earlier decline and displacement in Cleveland Bay are no
longer present and/or ecological conditions (e.g., prey availability, habitat quality) may have
improved. This temporal pattern coincided with the post-construction phase of the CU
project, and suggests that reduced disturbance levels and/or potential habitat improvements

may have supported the reoccupation of previously used areas.

Interestingly, the overall condition of seagrass meadows in Cleveland Bay, used as
a proxy for habitat quality and a feature associated with snubfin dolphin habitat preferences
(Parra 2006), was reported as satisfactory in 2019, good in 2020, 2021, and 2022,
satisfactory in 2023, and poor in 2024 (McKenna et al. 2020, 2021, 2022, 2023, 2024, 2025).
The observed decline in most seagrass meadows in Cleveland Bay in recent years (2023-
2024) has been attributed to a combination of simultaneous and successive system-wide
meteorological influences (i.e. flooding, above average rainfall and extreme temperatures)
(McKenna et al. 2024, 2025). The decline in snubfin dolphins during 2022-2023, when
seagrass condition was good to satisfactory, and their return in 2024, when seagrass was
poor, highlight an opposing trend between seagrass habitat quality and dolphin
abundance/presence, suggesting that these shifts are unlikely to be explained by seagrass

condition alone. Instead, it seems more plausible that their decline in 2022-2023 and



subsequent return in 2024 were related to the presence and later cessation of stressors and
disturbances potentially associated with CU construction activities (e.g., capital dredging
and piling). While causation cannot be confirmed, these findings are consistent with the
hypothesis that snubfin dolphins are capable of responding to changes in local
environmental conditions and may re-establish use of preferred habitats when pressures

diminish and/or ecological conditions improve.

Regarding their spatial distribution across both Cleveland and Halifax bays in relation
to known disturbances (boats, dredging, rock-dumping, piling ), neither species seems to
have a convincing statistic relationship to such covariates. Like previous years’ analyses,
the high allocation of RVI to the unexplained spatial processes (i.e., spatial splines) for both
species suggests that a lot of the spatial variation was not captured by known environmental

or human related covariates, whether linear or not linear.

The CV likelihood ratio tests however, provided substantial support for the full model
including disturbance covariates for both species, providing evidence that the disturbances
had some effect. Based on RVI values and covariate interaction plots, maintenance
dredging seems to have a small effect on humpback dolphin spatial distribution (i.e. density
of species decreases as distance to maintenance dredging increases). The temporary
release of organic nutrients during dredging, as documented in previous studies (see review
in Todd et al. 2015), has the potential to enhance local prey abundance. Enhanced benthic
diversity and biomass near dredged channels could provide a temporary boost in foraging
opportunities for humpback dolphins, and thus explain their affinity for dredge channels and

proximity to maintenance dredging.

For snubfin dolphins, RVI values and covariate interaction plots of their spatial
distribution over the whole study area (including Cleveland and Halifax Bays) indicated a

small effect of distance to rock-dumping, with snubfin dolphin density decreasing slightly



with increasing distance from rock-dumping locations. Snubfin dolphins in Cleveland Bay
have been shown to exhibit high levels of site fidelity, with individuals frequently returning to
the same locations across multiple years including areas around the Port of Townville
associated with anthropogenic structures such as pier pilings, channels and rock walls.
(Parra et al. 2006a). This pattern was consistent with vessel- and land-based observations
in the present study, except in 2022 and 2023, when snubfin dolphins were virtually absent
from Cleveland Bay and the waters around the Port. This is likely a result of their need for
predictable access to resources such as food, and their reliance on specific habitat features
(e.g., shallow coastal waters with seagrass and mangroves) for foraging and social activities.
Additionally, coastal structures such as seawalls, jetties, and pier pilings can support diverse
marine life and provide valuable habitat for fish (Bulleri 2005, Dugan et al. 2011, Brandl et
al. 2017). These features may also aid dolphins in herding prey or benefit from prey
aggregations (Moreno and Mathews 2018, Methion and Diaz Lépez 2019, Mills et al. 2024,
Haughey et al. 2025). Port areas and shipping channels have been linked to dolphin
distribution, likely due to high prey availability from nutrient mixing and proximity to
productive habitats and fishing grounds (Maricato et al. 2022, Ledwidge et al. 2024, Mills et
al. 2024) Given these habitat features the strong site fidelity of snubfin dolphins , it is
plausible thatthey may not be highly disturbed by rock dumping activities, especially if these

activities do not drastically alter the core features of their foraging habitats.

4.4 Patterns of attendance to the port area

Land-based observations from Berth 11 within the Port of Townsville were feasible
throughout the day in 2024, given good weather conditions. However, our sampling was
limited to 12 days in June due to the closure of Berth 11 for maintenance work for the rest
of our sampling season. Despite this limitation, humpback dolphins were frequently

observed from the land-based station, and snubfin dolphins were seen on five days in 2024.



The frequent observations of humpback dolphins from the land-based station reflect
the ongoing use of the area by this species, which has been consistently observed in years
of monitoring and aligns with patterns of abundance and space use identified through vessel
surveys in Cleveland Bay. The sighting of snubfin dolphins on five separate days in 2024 is
notable, especially considering the absence of sightings in 2023 and the minimal presence
in 2022, when they were observed only once. This suggests a potential return to the area,
which may be indicative of a recovery in the species’ use of the bay. The return of snubfin
dolphins in 2024 could also signal that disturbances or changes in the environment that

caused their displacement in 2022 and 2023 were temporary in nature.

The quantitative assessment of differences in dolphin occurrence between 2024 and
all previous years indicated that the patterns of occurrence of humpback dolphins around
the port area in 2024 met or exceeded expectations based on prior years. For snubfin
dolphins, the 2024 land-based surveys showed that snubfin dolphins patterns of occurrence
around the port were higher in 2019-2020, declined in 2022-2023, and returned to 2021-
levels in 2024. These patterns agree with sighting patterns reported during vessel-based

surveys, abundance estimates and spatial distribution patterns.

Analysis of dolphin presence revealed interspecific differences in association with
construction activities. Snubfin dolphin sightings decreased during capital dredging, while
humpback dolphin presence showed a similar decline during rock dumping. In contrast,
humpback dolphins displayed a positive association with capital and maintenance dredging,
and snubfin dolphins with rock dumping. The observed interspecific differences highlights
that the response to these pressures differ between species and may depend on differences

in behavioral plasticity and resilience (Brakes and Dall 2016).

The decline in snubfin dolphin sightings around the port during capital dredging

activities suggests that this species may be more sensitive to disturbances associated with



sediment suspension, noise, or habitat disruption. While the observed pattern does not
confirm a causal relationship, it points to a potential link between these construction-related
activities and changes in dolphin occurrence. In contrast, humpback dolphins were more
frequently observed during construction and maintenance dredging, potentially indicating an
ability to exploit the altered environment, perhaps through increased foraging opportunities

associated with prey aggregation near disturbed areas.

Even when causation cannot be firmly established, applying the precautionary
principle is appropriate when dealing with vulnerable species like snubfin dolphins. This
principle supports the implementation of proactive mitigation measures, such as noise
abatement, temporal-spatial restrictions on capital dredging to avoid time and areas of core
dolphin activity, and habitat-sensitive planning, which may help reduce potential impacts

even when scientific certainty about the specific drivers of observed changes is lacking.
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