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document. To the maximum extent permitted by law, Flinders disclaims all liability 

howsoever occurring, including any liability arising out of fault or negligence, for any loss 
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Executive Summary 

This report presents the results of the Inshore Dolphin Monitoring Program (IDMP) 

for the Port of Townsville Limited (POTL) Channel Upgrade Project (CU Project). The data 

collected in 2023 during boat and land-based surveys were summarized and compared to 

previous years (2019-2022). The study investigated any changes in coastal dolphin 

abundance and distribution beyond natural spatial and temporal variations since 2019. 

As in previous years, in 2023 the IDMP methodology involved boat-based photo-

identification surveys of dolphins in Cleveland and Halifax Bays and visual land-based 

surveys of dolphins from Berth 11 within the Port of Townsville in Cleveland Bay. Data 

analysis of dolphin sighting data collected during boat surveys involved capture-recapture 

and species distribution modelling methods to assess differences in population 

demographics and spatial patterns across survey years (2019-2023). Land-based survey 

data was analysed using Bayesian p-values and Generalized Additive Models (GAMs) to 

assess overall differences in dolphin occurrence across all four years (2019-2023) in relation 

to anthropogenic activities associated with the CU project in Cleveland Bay and that 

coincided with the dolphin monitoring, including rock dumping (associated with rock wall 

construction in 2020), capital dredging (i.e., dredging carried out by a backhoe dredger in 

2022 and 2023), and pile driving (2022). We also assessed the dolphins’ patterns of 

occurrence in relation maintenance dredging (2019, 2020 and 2023) not associated with CU 

Project (i.e., routine dredging carried out by a trailing suction hopper dredger every year to 

remove material that has drifted into the channel over time and limits the access of ships). 

Three vessels undertook simultaneous, predetermined line-transect surveys over 14 days 

between June 9 and July 7, 2023, covering 1229.9 km in Cleveland Bay and 1075.5 km in 

Halifax Bay between. We observed a total of 31 groups of snubfin dolphins (2 in Cleveland 
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Bay and 29 in Halifax Bay), 50 groups of humpback dolphins (26 in Cleveland Bay and 24 

in Halifax Bay) and 21 groups of bottlenose dolphins (2 in Cleveland Bay and 19 in Halifax 

Bay). Ten individual snubfin and 51 humpback dolphins were photo-identified in Cleveland 

Bay, and 52 snubfin and 40 humpback dolphins were photo-identified in Halifax Bay in 2023. 

At the same time, we completed a total of 19 days of visual survey scans from the land-

based observation point on Berth 11. Humpback dolphins were observed on 16 days. 

Snubfin and bottlenose dolphins were not seen on any day. 

The total estimated abundance of snubfin dolphins in Cleveland Bay was stable over 

the first three years of monitoring with 31 in 2019, 42 in 2020, and 34 in 2021. During 2022 

and 2023 we had very few sightings of snubfin dolphins in Cleveland Bay and therefore the 

abundance estimates obtained for these years from the modelling are unreliable and likely 

to overestimate the abundance. A model that assumed the probability of capture in these 

years was the same as the mean from the first three years failed to yield an estimate for 

2022 and estimated 15 snubfin dolphins for 2023. The estimated total abundance of snubfin 

dolphins in Halifax Bay decreased from 56 in 2019 to 36 in 2020 and 33 in 2021 before 

increasing to 117 in 2022 and falling to 76 in 2023. The number of humpback dolphins 

present in Cleveland Bay increased from 19 in 2019 to 33 in 2020 and 2021 and increased 

again to 49 in 2022 and 90 in 2023 (Fig. 9). Humpback dolphin numbers were higher in 

Halifax Bay than in Cleveland Bay in most years, with 65 in 2019, 53 in 2020, 42 in 2021, 

and 77 in 2022. However, in 2023, Cleveland Bay had more humpback dolphins than Halifax 

Bay, with an estimated 90 individuals. 

Snubfin dolphin numbers in Halifax Bay rose sharply in 2022 and 2023 due to 

increased movements from Cleveland Bay, reduced emigration, and immigration from 

outside the region. However, the simultaneous drop in population estimates between 2022 

and 2023 indicates that many dolphins first identified in 2023 were already present but 
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undetected, meaning the surge in first captures reflects both true immigration and a lag in 

detection rather than a sudden population increase.  

The decrease in the number of sightings of snubfin dolphins in Cleveland Bay and 

relative increase in Halifax Bay over the last two years are reflected in their space use. 

Species distribution models of the spatial occurrence of snubfin dolphins and their relative 

density showed a marked departure from earlier years: with low occupancy and density in 

the region north and to the east of Port of Townsville, along the shore of Cleveland Bay, and 

a new elongated narrow band of moderate occupancy and density along the entire coast of 

Halifax Bay. In contrast, humpback dolphins continue to show high occupancy and density 

to the north and to the east of Port of Townsville, along the shore of Cleveland Bay, as well 

as a large expanse of high-occupancy and density between Saunders Beach and Cape 

Pallarenda in Halifax Bay. Generalised likelihood ratio tests to evaluate whether the 

disturbance covariates had an important contribution to the snubfin and humpback dolphins 

distributions, provided evidence that some disturbances had some effect. Based on RVI 

values both capital and maintenance dredging appear to have a small influence on snubfin 

dolphins spatial distribution, and counts of large boats, fishing boats and maintenance 

dredging on humpback dolphins spatial distribution. Covariate interaction plots suggested 

that snubfin dolphin density increased with proximity to maintenance dredging but also 

increased with greater distance from capital dredging. For humpback dolphins, covariate 

interaction plots indicated that their density increased with a higher number of large boats, 

decreased with more fishing boats, and increased with greater distance from maintenance 

dredging. Thus, why we may see a decrease in snubfin dolphins occurrence and density in 

Cleveland Bay where capital dredging took place.  

The quantitative assessment of differences in snubfin dolphins patterns of attendance 

to the port area between 2023 and all previous years suggest that 2023 was quite different 
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than the first three years of monitoring (2019-2021) and more similar to 2022. As in 2022, 

the number of encounters of snubfin dolphins was lower than expected based on previous 

years. In contrast, the number of encounters of humpback dolphins around the port were in 

line (or greater) than the expectations of previous years. The analysis of dolphin presence 

with respect to disturbances around the port indicated that: 1) snubfin dolphin occurrence 

decreased when capital dredging was present and/or active but increased during rock 

dumping; 2) humpback dolphin occurrence decreased when rock dumping was active but 

increased with both construction and maintenance dredging. 

Overall, the available data from both boat and land-based observations indicate that 

the occurrence and abundance of snubfin dolphins in Cleveland Bay and their pattern of 

attendance to the port area decreased in 2022 and 2023 in comparison to previous years, 

while their presence and abundance has increased in Halifax Bay. In contrast, humpback 

dolphin abundance and occurrence have increased in Cleveland Bay while remaining 

relatively stable in Halifax bay over the study period.  

The changes in population demographic parameters and patterns of attendance of 

snubfin dolphins to the port area coincided with CU capital dredging and piling activities in 

Cleveland Bay in 2022 and 2023. The data indicates snubfin dolphins decline in presence 

and numbers is correlated with capital dredging being present and/or active. It is important 

to note that these correlations do not imply causation. Our comparisons are informed on 

correlations between species abundance, occurrence and construction activities related to 

CU project, which may be causal but may also be contingent on a variety of extrinsic (e.g., 

climate, competitive exclusion, or dispersal limitation) and intrinsic factors (e.g., diet, habitat 

specialization) that could influence a species' occurrence and that are not accounted for in 

this study. Moreover, temporal delays in marine mammals’ response to pressures are often 

expected, and changes in population abundance, distribution and behavior often lag several 
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years behind habitat loss or degradation caused by environmental and anthropogenic 

disturbances. Therefore, the reduction in the abundance of snubfin dolphins in Cleveland 

Bay and their declined presence around the port area observed in 2022 and 2023 could also 

represent a delayed response to habitat loss following the completion of the rock wall 

construction for the 62-ha port reclamation area at the eastern end of the Port in 2021. As 

we gather more data over the next years (post construction activities) we will be able to 

assess if such changes are temporary and further elucidate the seasonally dynamic nature 

of the covariates involved in the models and the distributional dynamics of these highly 

mobile species.  
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1. Introduction 

The Townsville Port Channel Upgrade Project (CU Project) is a jointly funded project 

of the Queensland and Australian Governments and Port of Townsville Limited (POTL). The 

CU project is the first stage of the long-term Port Expansion Project and will be delivered 

over a period of six years from 2018 to 2024. The expansion of the Port of Townsville is 

needed to accommodate forecast growth in trade at the port and address current capacity 

constraints. As part of the environmental approvals under the Commonwealth Environment 

Protection and Biodiversity Conservation Act 1999 (EPBC Act) for the CU project, POTL 

was required to develop and implement an Inshore Dolphin Monitoring Program (IDMP). 

The aims of the IDMP are to establish baseline information and monitor and report 

on changes, beyond natural spatial and temporal variation, in the distribution, abundance, 

habitat use and behaviour of the Australian snubfin dolphin (Orcaella heinsohni) and the 

Australian humpback dolphin (Sousa sahulensis) in association with the CU Project 

construction activities. Both species are listed as: Matter of National Environmental 

Significance (NES) under the EPBC Act; ‘Vulnerable’ by the International Union for 

Conservation of Nature (IUCN) (Parra et al. 2017a, Parra et al. 2017b); ‘Near Threatened’ 

in the Action Plan for Australian Mammals 2012 (Woinarski et al. 2014); and ‘Vulnerable’ in 

Queensland, under the Nature Conservation Act 1992. The IDMP will be implemented over 

pre-, during and post-CU Project construction activities. The findings from the IDMP will be 

used to inform management decisions for the project on an ongoing basis. 

The specific objectives of the Inshore Dolphin Monitoring Program are to: 

1. Objective One: Develop an Inshore Dolphin Monitoring Program consistent with the 

Coordinated National Research Framework to inform the Conservation and Management of 

Australia's Tropical Inshore Dolphins (Department of the Environment, 2015), or subsequent 
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document; and that provides consistent and scientifically valid monitoring methodologies to 

be able to determine trends and identification of stressors with the potential to cause adverse 

impacts for these species. This program is to cover pre-, during and post-construction 

timescales as separate identified study stages and reporting deliverables. 

2. Objective Two: Provide a baseline assessment on the distribution, abundance and 

habitat use of the Australian snubfin dolphin and the Australian humpback dolphin species 

in areas of Cleveland Bay that may be directly or indirectly impacted by the CU Project and 

adjacent non-impacted sites. 

3. Objective Three: Monitor and report on changes, beyond natural spatial and temporal 

variation, to the population and behaviour of the Australian snubfin dolphin and the 

Australian humpback dolphin throughout construction, pile driving operations and dredging 

activities for the CU Project, and a sufficient period of time post-construction to identify any 

changes in population and behaviour of the identified dolphin species as a result of the said 

activities. 

4. Objective Four: Provide recommendations on key areas of adverse impact and 

potential mitigation measures, including the identification of residual adverse impacts in 

Cleveland Bay which cannot be managed.  

5. Objective Five: Contribute to improving public awareness during the works on the 

inshore dolphin populations in Cleveland Bay. 

IDMP of snubfin and humpback dolphins for the CU project commenced in June 

2019. The 2019 inshore dolphin surveys constituted the pre-construction phase as no 

construction activity occurred during this period. The 2020 inshore dolphin surveys 

corresponded with the initial marine construction activities of the rock wall which was 
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completed in 2021 and formed the perimeter of the 62ha Port Reclamation Area as part of 

the Channel Upgrade project. Construction activities associated with these included the 

placement of four different types of rock material: primary armour, secondary armour, core 

rock and ballast rock to the north of the existing East Port, at the mouth of Ross River. Pile 

driving activities for the CU Project started in 2021 and were limited to the development of 

the temporary unloading facility (TUF), mooring infrastructure for the discharge of dredge 

material from barges to the reclamation area and for the re-alignment of the channel 

navigational beacons. TUF piling was intermittent from Aug 2021 to Early Jan 2022, and 

beacon piling (20mins per day and not on consecutive days) was carried out in June/July 

2022 and Feb 2024.BCapital dredging activities (using a backhoe dredge) associated with 

the widening of the shipping channel started in 2022 in Cleveland Bay. In line with the scope 

of work, the objective of this report is to provide a summary of the fieldwork conducted and 

the results of the 2023 inshore dolphin monitoring program, and report on any changes, 

beyond natural spatial and temporal variation, in coastal dolphin abundance and distribution 

in association with the CU Project since 2019.  

Opportunistic sightings of other marine mammals (i.e., bottlenose dolphins, dugongs, 

and humpback whales) were recorded during surveys and are presented in this report as 

point distribution maps. 

2. Methods 

2.1 Data collection 

 Scientific permits and animal ethics 

The 2023 inshore dolphin monitoring program was conducted under Scientific Permit 

G19/42001.1 issued by the Great Barrier Reef Marine Parks Authority, permit SPP19-
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001808 from the Queensland Department of Environment and Science, and Animal ethics 

approval E477/18 from the Animal Ethics Committee of Flinders University.  

 Training 

All IDMP personnel received boat and land safety inductions and were trained in 

survey techniques and protocols between the 29th and the 31st of May 2023, which involved 

testing all boat and land-based equipment and data collection procedures. 

 Vessel-based survey methods 

As described in detail in the IDMP developed for the CU-Project, the boat-based 

methods have been built on a Robust Design sampling structure (Pollock et al. 1990, Kendall 

2013) of one primary sample per year (June-July), consisting of six secondary samples (i.e. 

a complete survey) at Cleveland Bay and Halifax Bay (Fig. 1).  
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Figure 1. Map of Cleveland and Halifax Bays study areas including inshore and offshore 

transects, Ross Creek transect, and environmental stations.  

Sampling methods followed standard procedures applied in capture-recapture 

studies of inshore dolphin studies (Parra et al. 2006b, Cagnazzi et al. 2011). We used 

automated survey design algorithms (Strindberg and Buckland 2004) implemented in the 

software program Distance (Thomas et al. 2009) to design a systematic random line transect 

survey with regular line spacing (1.6 km apart and at 45º to the shore) covering both inshore 

and offshore areas within each of the survey sites (Fig. 1). Systematic line spacing results 

in even spatial distribution of sampling effort, uniform coverage probability and better 

information on dolphins’ spatial distribution and environmental variables than random 

designs (Du Fresne et al. 2006, Thomas et al. 2007). Survey priority was given to inshore 

areas over offshore areas depending on weather conditions, as both snubfin and humpback 

dolphins occur mainly in inshore areas in the region. 

As in previous years, we used three rigid hull inflatable boats (RHIBs) (Fig. 2) to 

simultaneously survey different areas of each bay during June-July 2023 and complete a 

full survey of each bay within one day. All surveys were conducted in mostly good sighting 

conditions (Beaufort Sea State ≤ 3 and no rain) between 07:00 and 18:00, depending on 

suitable conditions. A crew of three observers and a skipper systematically searched for 

dolphins forward of each vessel’s beam with the naked eye. Once an individual or group of 

dolphins was sighted, on-transect effort was suspended and the dolphins were approached 

slowly (<5 knots) to within 5-10m to carry out photo-identification and record GPS location, 

species identification, group size (minimum, best and maximum estimates), group age 

composition (calf, juvenile, adult as defined by Parra et al. 2006a), and predominant group 

behaviour (Mann 1999a). Groups were defined as dolphins with relatively close spatial 

cohesion (i.e., each member within 100 m of any other member) involved in similar (often 
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the same) behavioural activities. Photographs of individual animals were taken using Nikon 

D750 digital SLR cameras fitted with 50-500 telephoto zoom lenses. After all, or most 

individuals in the group were photographed or dolphins were lost, transect effort resumed at 

the location on the transect line where the dolphins were first sighted. Data on environmental 

variables (water depth, sea surface temperature, turbidity, and salinity) were collected in situ 

using a U-52 Horiba multi-parameter water quality meter at the location where each group 

of dolphins was first encountered, at set points along the transect line, and at the beginning 

and end of each transect leg (i.e., environmental stations, Fig. 1). All data on survey 

conditions, survey effort and marine mammal sightings were recorded in handheld tablets 

using CyberTracker software (http://www. cybertracker.org/). 

 

Figure 2. Rigid hull inflatable boats a) RV Manta, b) RV Koopa and c) RV Coda used for 

boat-based surveys of inshore dolphins in the Townsville region during June and July 2023. 
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Research team conducting surveys of inshore dolphins in Cleveland Bay onboard vessel 

Manta (d). 

 Land-based survey methods 

Land-based observations of dolphin presence/absence around the port were mostly 

carried out from Berth 11, an elevated platform (LAT + 9. 5m above water) within the Port 

of Townsville (Fig. 3). Berth 11 offers a reasonable vantage point over coastal waters 

adjacent to the Port of Townsville that were previously identified as a dolphin high use area 

(Parra 2006). This area also coincides with the CU project area for land reclamation and 

widening of the channel at the harbour entrance (Fig. 3). Land-based observations of dolphin 

presence/absence around the port in 2020 were carried out at the entrance to Berth 11 

(~400m south of original observation point) due to shipping activities, and a three-week 

maintenance shutdown of the ship loader. Conducted over time, this method will enable us 

to determine the dolphins’ occurrence (presence/absence) in this area and assess their 

response to CU project construction activities including capital dredging, rock dumping and 

pile driving operations (Pirotta et al. 2013).  

Visual scan sampling every 15 min was used to record the occurrence (presence/absence) 

of dolphins (Altmann 1974, Mann 1999b), and covered a radius of approximately 1km 

around the observation point at Berth 11. Observations were conducted by a team of two-

three trained observers doing one or two three-hour shifts per day between 06:00 and 18:00 

depending on weather conditions. Visual observations were mostly undertaken during good 

weather conditions (i.e., Beaufort sea state ≤ 3 and no rain). Each observer scanned to the 

left or the right-hand side of the observation point with the aid of 7 x 50 binoculars and the 

naked eye. During each visual scan we recorded, within a radius of approximately 1km 

around the observation point, the presence or absence of dolphins, their group size, age 

composition, behaviour, the number, and types of boats traversing the area, 



  

17 
 

presence/absence of maintenance dredging (i.e., routine dredging, not associated with CU 

construction activities, carried out by a trailing suction hopper dredger every year to remove 

material that has drifted into the channel over time and limits the access of ships), and the 

presence or absence of CU construction activities including rock dumping (associated with 

rock wall construction in 2020), capital dredging (i.e., dredging carried out by a backhoe 

dredger in 2022), and piling (beacon pile driving carried out in June/July 2022). 

 

Figure 3. Location of (a) land observation point on Berth 11 within the Port of Townsville, 

and (b) researchers conducting dolphin surveys from the berth.  

2.2 Data analysis: Population demographics 

 Photo-identification  

Capture-recapture histories of distinctive individuals were used to estimate 

abundance of Australian snubfin and humpback dolphins across all years of study using 

capture-recapture population models (Williams et al. 2002, Amstrup et al. 2005). An 

individual was considered ‘captured’ when it was first photo‐identified, and ‘recaptured’ when 

photo‐identified thereafter. Individual snubfin and humpback dolphins were identified based 

on the unique natural marks on their dorsal fins (Parra and Corkeron 2001, Parra et al. 

2006a). 
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All photographs taken during boat surveys were examined and subjected to a strict 

quality and distinctiveness grading protocol before matching and cataloguing to minimise 

misidentification (Hunt et al. 2017). Only high-quality photographs of distinctive individuals 

were used in analyses. We used DISCOVERY (version 1.2.) software to process, match, 

catalogue and manage all the photo‐identification data (Gailey and Karczmarski 2012). 

Both “on effort” and “off effort” sightings were combined and included in capture- recapture 

(CR) analyses. Capture history data were analysed using the program MARK (White and 

Burnham 1999). 

Note that as we add a new year to the dataset the capture-recapture models are 

updated and thus the corresponding population demographic estimates for every year. 

Furthermore, every year the photo-identification catalogue is revised and corrected for any 

misidentification error (i.e., false negative: one individual is identified as two, false positive: 

two individuals are identified as one). 

  Capture-recapture models 

The Multistate Closed Robust Design model (MSCRD, Brownie et al. 1993, Nichols 

and Coffman 1999, Kendall and Nichols 2002, Kendall 2013) was employed for analysis of 

the capture-recapture data to estimate abundance, apparent survival, and movements 

between sites and temporary emigration between primary samples. The MSCRD extends 

the Closed Robust Design model (CRD, Pollock 1982, Kendall and Nichols 1995, Kendall 

et al. 1995, Kendall et al. 1997) to include multiple states following the multistate model for 

recapture data (Arnason 1972, 1973, Brownie et al. 1993, Schwarz et al. 1993). 

The MSCRD model provides estimates of: 
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1. Apparent survival (𝜙𝜙�) between primary samples (probabilities of being 

alive and present in the sample area) for both sites. 

2. Movements between sites (ψ MS) and temporary emigration (ψ TE) 

between primary samples (probabilities of movement between states). Temporary 

emigration is included among the movements in the MSCRD by defining an 

‘unobservable’ state for dolphins that are temporarily absent (offshore or elsewhere) 

during a primary sample. There are two parameter estimates for temporary 

emigration in any primary sample: the probability of being absent from the sampling 

area in that primary sample (emigration) and the probability of returning in that 

primary sample after an absence (reimmigration). 

3. Abundance at each primary sample (N, number present on a site) for 

both sites. 

With two sites, three states were defined: two observable states on the two sites (CB 

and HB) and one unobservable state (U) for temporary absence from both sites. Dolphins 

may move between all three states (or stay where they were) between consecutive pairs of 

primary samples, with such movements being modelled as transition probabilities. 

Different patterns or structures of temporary emigration may be estimated by applying 

constraints to the corresponding temporary emigration and (re) immigration parameters. An 

implication of estimating these separately is that the probability of emigration in an interval 

is related to the probability of emigration in the previous interval or has a Markovian temporal 

structure. When the probability of emigration in an interval is equal to the probability of 

staying away after a previous absence, whether an animal comes or goes is a random 

process and the temporary emigration structure is referred to as ‘random’. When the 

probability of emigration in an interval is equal to the probability of immigration after a 

previous absence there is an even flow of animals into and out of the sample area and the 
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temporary emigration structure is referred to as ‘even flow’. Kendall (2013) may be the most 

accessible account of these temporary emigration structures. 

Capture-recapture studies typically yield an estimate of apparent survival or the 

probability of both remaining alive and available for recapture in the sample area. Estimates 

of the probability of remaining alive (biological survival) must be made by other means. If 

estimates of both apparent and biological survival are available however, an estimate may 

be made of the probability of permanent emigration from the sample area. More formally, an 

estimate of the probability of permanent emigration 𝐸𝐸� may be derived as 𝐸𝐸� = 1 − 𝜙𝜙�

𝑆̂𝑆
 where 𝜙𝜙� 

is an estimate of the probability of apparent survival and 𝑆𝑆 �  is an estimate of the probability 

of biological survival. 

 Life history data on Australian inshore dolphins that might support an estimate 

of the rate of biological survival for a species are extremely limited. Studies on the Indo-

Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary in southern China 

(Huang et al. 2012) yielded an estimate of biological survival of 0.97 (95% CI = 0.96-0.98) 

per annum. The Indo-Pacific humpback dolphin is a close relative of the Australian 

humpback dolphin and the biological survival rates of the two species may be expected to 

be similar. The adult survival rate for the Australian snubfin dolphin (Orcaella heinsohni) was 

reported as 0.95 per annum by Taylor et al. (2007). 

 MCRD Data preparation 

The MSCRD requires data identifying whether each individual dolphin was or was not 

captured in each combination of primary and secondary sample (PS x SS). There were 

many examples of the same dolphins having been captured more than once in the same 

primary and secondary samples. These repeat captures arose from the simultaneous 

operation of three boats and because of within-day movement of dolphins between the 
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transects where they were first captured to other transects being surveyed later in the day. 

There was a mixture of captures made ‘on-effort’ (while following the pre-defined transects) 

and captures made ‘off-effort’ on transit between transects. Repeat captures in the same 

primary and secondary samples were redundant and deleted from the data prior to model 

fitting. Deletions were made in two steps: when repeat captures were made both on- and 

off-effort, the on-effort captures were retained; and among the remaining captures, the 

capture made first was retained. 

The MSCRD models the data from both sites simultaneously and requires that no 

dolphin is recorded as having been captured on both sites in the same primary sample. 

There were a few examples of dolphins having moved between the sites within a primary 

sample and having been captured on both. The capture histories for these dolphins were 

modified to show all captures within each primary sample as having been made on the site 

where they were first captured. 

The survey design specified six secondary samples (SS) on each site in each primary 

sample (PS). Pairs of secondary samples were taken consecutively on each site. The 

numbers of captures in the original six secondary samples (SS) were sometimes zero or 

very small. In response to this event, the data were collapsed from six (SS) to three 

secondary samples (SS3) by recording whether each dolphin was or was not captured within 

each consecutive pair of secondary samples. 

 Goodness of fit  

It is necessary to assess whether the data collected are consistent with the statistical 

model proposed for their analysis, i.e., to assess the goodness of fit of the data to the model. 

We used program U-CARE (Choquet et al. 2005) for goodness of fit tests. The tests were 

performed on data collapsed to primary samples; for models for a single site, the tests 
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assume a Cormack-Jolly-Seber (CJS; Lebreton et al. 1992) type of model, and for MSCRD 

models they assume a multistate version of the model that allows for transitions between 

states (JollyMove; Brownie et al. 1993). If there is significant lack of fit, it is necessary to 

adjust the estimates using an estimate of the variance inflation factor 𝑐̂𝑐 and a version of AICc 

for over dispersed data (QAICc; Burnham and Anderson 2002). The variance inflation factor 

𝑐̂𝑐 was estimated as the ratio of the overall test statistic for the model from U-CARE and the 

model degrees of freedom. 

 Model selection – AIC 

The modelling process involves fitting a set of models with alternative parameter 

structures and comparing them for fit to data and parsimony. Models are compared with the 

Akaike Information Criterion corrected for small sample sizes (AICc, Burnham and Anderson 

2002), with smaller values of AICc indicating better fitting models, and with AICc weights, 

which measure the relative likelihoods of the models in the set. When one model in the set 

has a clearly lower AICc than all others and has attracted the major proportion of the AICc 

weight, the parameter estimates from this ‘best’ model are reported; when several models 

have similar AICc values and share the AICc weight, model-averaging may be applied 

(Buckland et al. 1997) whereby weighted averages of the parameter estimates from several 

models are reported. 

 Estimating the total population size 

Not all individuals have sufficiently distinctive marks to support unambiguous 

identification. Only distinctively marked individuals may be ‘captured’ in photographs and 

capture-recapture models can only yield estimates of the number of distinctively marked 

members in a population. This estimate may be adjusted to yield an estimate of total 

population size by dividing by an estimate of the proportion of distinctively marked 

individuals in the population as described below. 
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For each species, the number of individuals depicted by good quality photographs (

tP ) and, of those, the number that depicted a distinctively marked individual ( mP ) was 

recorded for each group encounter. A binary logistic model was fitted to the data on 

distinctive and non-distinctive dolphins to estimate the marked proportion (𝑀𝑀�𝑝𝑝) of the 

population for each species.  

The total abundance (𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) of each population for any sampling period and site may 

be estimated by dividing the estimated abundance of marked dolphins (𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) by the 

estimated marked proportion (𝑀𝑀�𝑝𝑝): 

𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀�𝑝𝑝

, with S�𝐸𝐸(𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑁𝑁�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

�𝑁𝑁�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
2 +

𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀�𝑝𝑝)

�𝑀𝑀�𝑝𝑝�
2  

Log-normal confidence intervals for abundance estimates may be calculated 

following Burnham et al. (1987): 

𝑁𝑁�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑁𝑁�

𝐶𝐶 and 𝑁𝑁
�𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑁𝑁� ⋅ 𝐶𝐶, where 𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑧𝑧𝛼𝛼

2
�𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 �1 + �

𝑆̂𝑆𝐸𝐸(𝑁𝑁�)
𝑁𝑁�

�
2

�� 

2.3 Data analysis: Spatial distribution 

 Modelling framework 

Our goal was to model dolphin’s spatial distribution in the study area before (2019) 

and after (2020) CU project construction activities began. We aim to gather quantitative 

indicators of differences in the spatial distribution of snubfin and humpback dolphins across 

years. We use a large collection of quantitative methods to do this, from descriptive statistics 

to likelihood ratio tests. Note that as we add a new year to the dataset the species distribution 
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models are updated, while considering interannual variation, and so are the corresponding 

spatial predictions and related statistics for every year.  

We also aimed to evaluate whether CU project construction activities (e.g., rock 

dumping, capital dredging, pile driving) were important predictors of dolphin’s spatial 

distribution.  

Our evaluations were primarily through model-based inference and descriptions of 

models’ behaviour. We did the following: 

1. Estimated covariates’ “Relative Variable Importance” for a range of human-activities 

(boats presence, presence of anthropogenic disturbances) and environmental 

covariates (SST, salinity). 

2. Calculated likelihood-ratios between models with anthropogenic disturbances vs 

models without. 

3. Marginal plots of covariates’ functional relationship with species’ abundances  

4. Assessed models’ predictive performance (e.g., ROC-AUC and PR-AUC scores). 

As was detailed in the previous report, the modelling framework used for species 

distribution modelling was the high-performance “boosting” technique (Bühlmann and Yu 

2003, Schmid and Hothorn 2008), specifically emulating the works of Kneib et al. (2009) and 

Hothorn et al. (2010). The method is an ensemble method that automatically performs model 

selection among different sub-models, such as spatial splines, temporal splines, spatial 

autocorrelation, and linear effects, etc. The method also addresses many common data-

challenges, including small samples size and high-dimensionality (“small-n high-p 

problem”), and high multicollinearity among spatial covariates (Oppel et al. 2009, Schmid et 

al. 2010, Bühlmann et al. 2013, Mayr et al. 2014). It is also related to other high-performance 

methods (Meir and Rätsch 2003, Chen and Guestrin 2016) and can decompose variation 

into spatial, temporal, and observational covariates, as motivated by Hothorn et al. (2010). 
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Species distribution models for 2019, 2020, 2021, 2022 and 2023 incorporated 9 sub-

components, representing different groupings of covariates, and wrapped in different 

functional forms (Table 1). The method is supposed to only select the most important sub-

models. The unimportant sub-models are either “shrunk” to have only a small contribution 

to the overall ensemble’s prediction, or they are ignored altogether. The various components 

were: 

1. Main effect penalized least squares, one for each covariate representing weather 

conditions, ecological variables, and boats. 

2. Interaction penalized least squares, one for each covariate representing ecological 

variables and boats, including an interaction with “year” (i.e., different slopes and 

intercepts for 2019, 2020, 2021, 2022 and 2023). 

3. Decision-tree (1), including covariates for weather conditions. 

4. Decision-tree (2), including covariates for ecological variables, boats, and the distance-

to-disturbance covariates (rock dumping, capital dredging and piling). 

5. The same as base-learner #2 plus “year” as a potential interacting covariate. 

6. Main-effect univariate splines for time-of-day and time-of-year. 

7. Interaction univariate splines for time-of-day and time-of-year, including “year” as an 

interaction term (i.e., different marginal effects for each year). 

8. Main-effects bivariate splines for large-scale spatial trends. 

9. Interaction bivariate splines for large-scale spatial trends; including “year” as an 

interaction term (i.e., different marginal spatial trends per year). 

One difference between this year’s analysis and previous years’ analyses was our decision 

to discard the radial basis function (to model small-scale spatial autocorrelation). These 

were discarded because: i) they become computationally infeasible with more interaction 
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terms (per year effects); ii) they were not selected in past-years’ best models (particularly 

2022), and iii) they are functionally similar to bivariate spatial splines. 



Table 1. Covariates considered for the species distribution modelling of Australian Snubfin and humpback dolphins in Cleveland and 

Halifax Bays between 2019 and 2023 with columns indicating the: i) type of sub-model used for each covariate group within the larger 

ensemble-of-models, ii) the data-source for training the ensemble and iii) data source at prediction locations (how the covariate was 

extrapolated outside the points of data-collection), and iii) data source at prediction locations (how the covariate was extrapolated 

outside the points of data-collection). 

Sub-models Model type Covariate Covariate description Source at training Source at prediction 

1,2, & 3 

Main Effect 
PLS, 

Interaction 
PLS, and 

Decision trees 

BSS Beaufort Sea-State (BSS), 5-point ordinal scale In-situ estimate Constant, average 
conditions 

Swell Estimated swell height In-situ estimate Constant, average 
conditions 

Visibility Visible distance, 3-point ordinal scale In-situ estimate Constant, average 
conditions 

Glare Glare intensity, 4-point ordinal scale, summed two 
sides In-situ estimate Constant, average 

conditions 

1,2,4 & 5 

Main Effect 
PLS, 

Interaction 
PLS, and 

Decision trees 

SST Sea surface temperature (SST) from 
multiparameter water sensor In-situ measurement Interpolated spatial 

surface 

Salinity Conductivity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

Turbidity Turbidity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

River Distance Log-distance to coastal waterways/estuaries GIS, derived 

(Dyall et al. 2004) Same as training 

Reef Distance Log-distance to reefs 
 (indicative reef outline as mapped by GBRMPA) 

GIS, derived 

(Beaman 2012) Same as training 

Seagrass 
Distance Log-distance to seagrass meadows 

GIS, derived 

(McKenzie et al. 2014) Same as training 

Foreshore 
Distance 

Log-distance to foreshore ecotypes (Euclidean 
distance to only mainland foreshore ecotypes) 

GIS, derived 
(Beaman 2012) Same as training 
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Sub-models Model type Covariate Covariate description Source at training Source at prediction 

Land Distance 
Log-distance to land (Euclidean distance to 

coastal boundary, including mainland and large 
islands) 

GIS, derived 
(Beaman 2012) Same as training 

Bathymetry Average depth GIS, bathymetric DEM 
(Whiteway 2009, Beaman 2010) Same as training 

Boats Total Counts of all boats in vicinity In-situ counts Interpolated spatial 
surface 

Boats Small Counts of all boats in vicinity, small size (< 5m) In-situ counts Interpolated spatial 
surface 

Boats Medium Counts of all boats, medium size (5-10m) In-situ counts Interpolated spatial 
surface 

Boats Large Counts of all boats, large size (> 10m) In-situ counts Interpolated spatial 
surface 

Boats Fishing Counts of all fishing boats and trawlers In-situ counts Interpolated spatial 
surface 

Boats 
Recreational 

Counts of all recreational motorboats and sailing 
boats In-situ counts Interpolated spatial 

surface 

Boats Industrial Counts of all barges, tugs, tankers, ferries, and 
cruise ships  In-situ counts Interpolated spatial 

surface 

Rock Dumping Log-distance to rock dumping during days of 
activity in 2020; otherwise max distance GIS, derived Interpolated spatial 

surface 

Piling Log-distance to piling locations during days of 
activity in 2022; other max distance GIS, derived Interpolated spatial 

surface 

Maintenance 
Dredging 

Log-distance to maintenance dredging locations 
during 2019 and 2020; other max distance GIS, derived Interpolated spatial 

surface 

Capital dredging Log-distance to construction during days of 
activity in 2022 and 2023; other max distance GIS, derived Interpolated spatial 

surface 

Min distance to 
disturbance 

Minimum distance over rock dumping, piling, and 
dredging (capital and maintenance). GIS, derived Interpolated spatial 

surface 

Pointwise 
disturbance 

Binary indicator of onboard records of 
disturbances being present In-situ measurement Set to 0 
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Sub-models Model type Covariate Covariate description Source at training Source at prediction 

6, 7 

Main-effect 
splines, and 
Interaction 

splines 

Time-of-day Metric time at observations In-situ measurement Constant, average 
conditions 

Day-of-Year Julian-day In-situ measurement Constant, average 
conditions 

8,9 

Main-effect 
bivariate 
splines, 

Interaction 
bivariate 
splines 

Space X & Y UTMs used in spatial spline GIS Same as training 
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 Main Effects and Interactions 

Some of the covariates are represented in more than one sub-model, especially as 

different sub-models represent “main effects” versus “interaction effects” with year. During 

the automatic model-selection and regularization, the model selects the best combination of 

main-effects and interaction effect. For example, the penalized least-squares sub-models 

can represent a univariate main-effect with no interactions; or they can have an interaction 

with “year”, such that the slope and intercepts vary per year. Those sub-models that include 

“year” as an interacting categorical variable have more penalization than the “main effects” 

learners. This means that the automatic mode-selection should only select the higher-order 

interactions if the extra complexity is warranted and there is some important difference 

between years, in terms of dolphin spatial distribution.  

 Disturbances 

 There were multiple distance-to-disturbance covariates that were introduced 

this year. In past reports, the presence of such disturbances were simply recorded in-situ, 

but such information was difficult extrapolate to a broader spatial field.  

 Using GIS and UTM coordinates, we mapped these disturbances to specific 

points, and approximate times (based on data provided by the Port of Townsville), allowing 

use to calculate each dolphin sighting (and null-points’) distance to the disturbance on 

specific dates.  

 These disturbance covariates included: 

• distance to rock dumping, present in June-July of 2020. This activity 

was related to CU project and occurredimmediately adjacent to the port lands. 

• distance to piling activities present intermittently between 28/06/2022 

to 9/07/2022. Piling occurred at a few distinct locations with known dates along the 
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channel stretching from the Port of Townsville to the south-east region of Magnetic 

Island. 

• distance to capital dredging (BHD), occurring intermittently in the 

winters of 2022 and 2023 on known dates, along the channel stretching from the 

Port of Townsville to the south-east region of Magnetic Island. 

• Minimum distance to disturbance. This spatial covariate was the 

minimum of all the above covariates when they were available. 

• distance to maintenance dredging (TSHD) present during 24/05/2019 

to 09/06/2019 and from 1/06/2020 to 29/06/2020). These activities occurred along 

the channel stretching from the Port of Townsville to the south-east region of 

Magnetic Island. 

 Distances to the disturbances were calculated for each dolphin observation 

and each null-point. The distances were “marine distances”, such that they accounted for 

islands and mainland obstructions. See Fig. 4 for an example of the shortest distance 

between a dolphin located north of Magnetic Island, and a disturbance.  

 During time-intervals in which a disturbance was not occurring, we set the 

covariate’s value to the maximum over the study area. In other words, when a disturbance 

wasn’t present, it was recorded as being maximally distant. This was necessary to fill null-

values with a proper metric. Years without a particular construction activity provide a 

reference point for comparison. Including non-disturbance years prevents bias in the 

dataset by ensuring that the model is not only capturing responses to disturbance, allowing 

us to assess whether any observed changes in dolphin distribution were temporary or 

persistent, whether changes are potentially due to CU construction activities or just part of 

the dolphins' natural behavior. 



 

32 
 

 All the distances were logged and then re-scaled to zero-mean and unit-

variance. 

   

Figure 4. Demonstration of the shortest-distance path between a disturbance point to the 

south-east of Magnetic Island, and a dolphin point to the north of Magnetic Island, whereby 

the straight-line is obstructed by the island. These shortest marine paths were used for the 

distance-to-disturbance covariates. 

 

 Model Parsimony, Hyperparameters and Regularization 

The automatic ensemble-building and shrinkage mechanism theoretically improves 

model predictive performance by shrinking the weights of unimportant sub-models so that 

they have a small overall effect. This is also known as l1-regularization (which is equivalent 

to the Lasso). Therefore, the final ensemble is more parsimonious than the full theoretical 

model which could include all sub-models. 
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The degree of shrinkage/regularization was controlled by several hyperparameters. 

These are explained in the following list. The values for each of these hyperparameters was 

tuned via 10-fold cross-validation, such that the hyperparameters with the best predictive 

performance, according to the 10-fold cross-validation log-likelihood, was selected as the 

final model used for inference. 

The pertinent hyperparameters were: 

• the number of boosting iterations m (aka the “early stopping” parameter). The 

more iterations meant more complex models, and fewer boosting iterations meant more 

shrinkage and fewer selected sub-models. 

• the learning-rate (aka “shrinkage” rate) which down-weights the contribution 

of any individual submodel. This was fixed to a single value per species (0.01-0.12), after 

manually experimenting with different values to get final models that had between 1000-

6000 boosting iterations. A lower shrinkage rate meant that the model required more 

boosting iterations and has a smoother surface; a higher shrinkage rate meant the model 

required fewer boosting iterations and produced a less-smooth surface. A smaller rate is 

generally preferable but comes at high computational cost (time and electricity). 

• Max-depth of decision-trees, which could take on values of [3, 4]. This 

hyperparameter was only relevant for the decision-tree sub-models (No. 3, 4 and 5). The 

maximum tree depth (maxdepth) controlled the degree of interaction among covariates 

and the number of partitions of the covariate space. A small maxdepth meant that only 

two-way interactions were allowed, and there were only three splits of the covariate 

space (per boosting iteration). A higher maxdepth allowed higher-order interactions and 

allowed many more splits of the covariate space. 

• Bucket weight i.e., the minimum weight of terminal leaves in the decision-trees, 

which could take on values in the range of [2,6]. Lower values allow fitting more granular 
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variation, at the risk of overfitting. Higher values require patterns to have more support 

in terms of the number of points on either side of a split, at the risk of underfitting rare 

but important patterns. 

• Minimum test-statistic threshold (i.e., mincriterion, in the mboost R-library) 

which could take on values [0.4, 0.5, 0.6, 0.7, 0.75, 0.8 0.85]. This hyperparameter was 

only relevant to the decision-tree sub-models (No 3, 4 and 5). It controlled the hurdle rate 

for testing whether a split in the covariate space was significant enough to continue 

growing a decision tree. Lower values allowed the trees to grow longer (more interactions 

and more splits); higher values prevented the tree from growing too long and prevented 

unimportant splits from entering the model. 

• Degrees-of-freedom of the main-effects spatial splines, which could take on 

values [12 - 38]. This hyperparameter was only relevant to the main-effect spatial spline 

(sub-model No.8). A higher degree-of-freedom allowed a more flexible spatial 

surface,while lower values resulted in less spatial complexity. 

• Degrees-of-freedom of the spatial splines with year-interactions, could take on 

values in the range [18, 40] In previous years, these values were fixed as a multiple of 

the main effects. In either case, the values were higher to absorb per-year marginal 

variation above-and-beyond the variation that is common to all years (which should be 

explained by the main-effect spatial base-learner). 

• Degrees-of-freedom of the main-effects of the spatial-autocorrelation radial 

basis function (for sub-model No.10) which could take on values [12 - 36]. Higher values 

allowed “wigglier” auto-correlation effects, and lower values enforced smoother auto-

correlation effects. 

• Degrees-of-freedom of the spatial-autocorrelation radial basis function with 

year- interactions (sub-model No.11). which could take on values [12 – 36]. In previous 
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years, these values were fixed as a multiple of the main effects, but were allowed to vary 

somewhat independently in this study. 

• K-knots in spatial splines, i.e., the number of basis functions underlying a 

spline. This could take on values between 20 to 36. Higher values allow more granular 

spatial processes, at the risk of overfitting noise, while lower values force fitting more 

large and systemic patterns, at the risk of underfitting local spatial variation. 

• Other parameters, like the degrees-of-freedom of the penalized least-squares 

models (sub-models No. 1 and 2) and the degrees-of-freedom of the temporal splines 

(sub-model No.5) had their values fixed to 1 and 4, respectively, for all models (i.e., the 

recommended default values of the mboost library). 

 Relative Variable Importance 

 After tuning the hyper-parameters, we trained a final model for each species. 

These final models were used for inference, including estimating the relative variable 

importance (“contribution to risk-minimisation”; Elith et al. 2008) as well as spatial prediction 

of dolphin locations and abundance, and used for conducting comparative likelihood-ratio 

tests. 

 Covariate Partial Plots 

 Whereas RVIs and likelihood ratio tests can help quantify the importance of a 

covariate upon a species’ distribution, they do not provide a sense of the functional-

relationship or direction of the relationship between a covariate and the response variable. 

With traditional linear models, one can look at the direction and magnitude of coefficients to 

inference such relationships, but these are unavailable for machine-learning methods. 

Furthermore, the high-dimensional interactions that are present in machine-learning models 
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means that a single covariate can rarely be interpreted in isolation, but must be observed 

as party to multiple two- or three-way interactions with other covariates. 

 Therefore, we made marginal plots of the two-way interactions between the 

high-RVI covariates and the (predicted) response variable. From these non-linear 

interactions, we looked for patterns in the relationship and magnitude of relationship 

between species’ predicted abundance and the underlying covariates. 

 A pair’s marginal plot was created by first fixing the values of all other 

covariates to their 2023 mean-values, and then varying the pair’s values uniformly 

throughout its empirical range (in 2023), to get a 2D surface. The 2D surface was truncated 

to minimum convex hull of a pair’s empirical values (effectively excluding combinations of 

values that do not exist in reality, like maximum depth and zero distance to land). 

 AUC statistics 

 Model performance was assessed by statistics including the area under the 

receiver-operator curve (cv-ROCAUC) and the area under the precision-recall curve (cv-

PRAUC) (Fielding and Bell 1997, Harrell Jr 2015). For the AUC statistics, values above 0.5 

to 1 are considered improvement over random classification. 

 Likelihood-Ratios: Inference about disturbances 

  In order to evaluate whether the disturbance covariates had an important 

contribution to the species’ distributions, we used generalised likelihood ratios (Royall 1997) 

to compare two models per species: the best model according to hyperparameter tuning vs. 

a reduced model which dropped all the disturbance covariates (e.g., distance to rock 

dumping, distance to dredging, etc).  
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 When the likelihood ratio between the reduced model and the full model is very 

high (>>1), it is evidence that the disturbance covariates are not significant contributions to 

the SDM. When the likelihood ratio between the reduced model and the full model is very 

low (<<1), it is evidence that the disturbance covariates are significant. Furthermore, the 

degree of significance is monotonic with respect to a decrease in the likelihood ratio, 

allowing us to compare between species and answer the question: “are disturbances more 

or less significant for snubfins or humpbacks?” 

 We used a 5-times 10-fold cross-validation to approximate the “expected 

likelihood” (as opposed to the within-sample likelihood), such that the likelihood calculations 

were evaluated by training the model 5-times on 10-fold subsets of the data, and then 

estimating the likelihood on the hold-out samples. The mean over the cross-validation runs 

(aka CV-likelihood) was our estimate for the expected likelihood. It should be noted that the 

AIC is famous for approximating the expected likelihood, i.e., minimising the AIC maximises 

the expected likelihood (Akaike 1974, Akaike 1998). Therefore, by comparing two models 

by their CV-likelihoods, we are essentially conducting the same type of model comparison 

as minimising the AIC (albeit, with a different approximation of the expected likelihood). 

 We also computed CV p-values to contextualise our confidence in the 

conclusions of the likelihood ratio. The CV p-values were the proportion of the 5-times CV-

runs in which the reduced model was better than the best-model. For example, if the reduced 

model defeats the best model 0 times, then our p-value would be 0.0. If the reduced model 

defeats the best model in all CV-runs, then the p-value would be 1.0. The approximate p-

value can take on multiples of 0.2 (i.e., 0, 0.2, …., 1.0). Low p-values mean that the full-

model can be rejected with more confidence that the conclusion is robust to multiple 

realisations of the data. 
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 Spatial predictions 

Using the best model (according to cross-validation) we produced three types of 

spatial partial plots. The first partial plot was the probability of occurrence 

(presence/absence) of snubfin and humpback dolphins. The second plot is the expected 

counts of animals in groups if the group is present. This is not to be confused with 

abundance, because a very sparsely distributed population which aggregates into large 

herds/pods could have the same abundance as an evenly distributed population with small 

group sizes. The third spatial partial plot was the product of the probability of occurrence 

and group sizes, which yields a predicted density of snubfin and humpback dolphins in 

Cleveland Bay and Halifax Bay. 

 Spatial Interpolation of In-Situ Covariates 

As was performed in the previous report, as a pre-processing step prior to the species 

distribution model spatial predictions, we needed to interpolate values of some of the 

covariates (i.e., generate spatial maps). This was necessary for those covariates which were 

estimated or measured in-situ during the boat surveys (such as SST, turbidity, salinity, boats 

total, boats small, boats medium, boats large, boats fishing, boats recreational, and boats 

industrial). Being measure/estimated in a point-wise fashion, they have no natural map that 

we can use for the species distribution model spatial prediction.  

As we did in the previous report, the spatial interpolations were conducted by pooling 

two spatial modelling techniques: 

• Generalised additive models GAMs: model-averaging of spatial GAMs; and 

• component-wise boosting. 

Each in-situ covariate was modelled according to both modelling techniques, and 

their spatial predictions were averaged. Both techniques allowed decomposition of variation 
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into spatial components and temporal components. Only the spatial components were used 

for generating the spatial interpolations (in other words, all temporal effects were set to their 

mean-value across the entire spatial survey area). 

Regarding missing data, we employed a two-round approach. During round #1, all 

rows of data that had missing data were deleted, and an initial working-model was made for 

SST, turbidity, salinity and all the boat-covariates, for a total of 10 models (one per covariate 

that required interpolation). The missing values of these covariates were then imputed using 

the Round #1 models, and a second round of models were run, conditional on the imputed 

values from Round 1 (thereby allowing us to use all rows of data). The Round 2 models were 

then used to interpolate the values of the covariates across the study area for all years.  

 Spatial Interpolation by Generalised additive models (GAMs) 

The spatial interpolation by GAMs consisted of running multiple models and model-

averaging their predictions by AIC weights. We used the R-package mgcv (Wood 2003). 

The different models consisted of different combinations of the following terms/sub-models: 

1. year-as-factor (i.e., different intercepts per year) 

2. three of the following main-effects using thin-plate shrinkage splines: 

spline(bathymetry), spline(distance to rivers), spline(distance to reefs), spline(distance 

to seagrass), spline(distance to nearshore), spline(distance to land), spline(SST), 

spline(salinity), and spline(turbidity). Only three combinations of covariates were tested, 

in which covariate-sets were selected based on minimizing in-group correlation among 

the covariates. 

3. one of the following soap-film spatial smooths: spline(latitude, longitude) as a 

main-effect spatial; and spline(latitude, longitude, interaction=year) as a per-year 

interaction. 
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4. one of the following bivariate splines: spline(time-of-day, time-of-year) as a 

main-effect temporal spline; and spline(time-of-day, time-of-year, by=year) as a per-year 

interaction spline. 

It should be noted that the GAM method benefitted from the soap-film spatial smooth 

that respects maritime boundaries and islands (unlike generic kriging methods or generic 

bivariate splines).  

It should be noted that there were additional, more-complex models that were 

possible, such models with bivariate interactions among covariates, but these often-had 

difficulty converging and failed. Nonetheless, given the small amount of data, it is reasonable 

to bias the models to only those that have a small amount of complexity (i.e., a few number 

of covariates and degrees-of-freedom), and use model-averaging to weight models 

according to their predictive performance. 

 The models for SST, salinity, and turbidity used a Gaussian distribution 

(sometimes the values were log-transformed and mean-centred in order to get 

approximately normally distributed values), whereas the boat covariates (boats total, boats 

small, boats medium, boats large, boats fishing, boats recreational, boats industrial) were 

modelled according to a Poisson distribution (note: in past years we tried to interpolation-

GAMS with a zero-inflated Poisson distribution, but these proved computationally infeasible 

with more data). 

 The final model was combined by discarding models with less than 5% AIC 

model-weights and weighting the remaining predictions according to their AIC model-

weights. 
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 Spatial Interpolation by Boosting 

The second interpolation method was boosting. The technique was identical to that 

used for species distribution modelling for snubfin and humpbacks but excluded all 

covariates relating to weather conditions (e.g., BSS, glare), thereby focusing on large-scale 

spatial processes for interpolation, and not intra-day weather variation.  

The interpolated covariates SST, salinity, and turbidity were run using a Gaussian 

distribution, whereas the boat covariates (boats total, boats small, boats medium, boats 

large, boats fishing, boats recreational, boats industrial) were modelled according to a zero-

inflated Poisson distribution. 

 Spatial Interpolation of Distance-to-Disturbances 

 Although the disturbances (piling, rock dumping, capital dredging) were 

literally spatial fields, we transformed them into spatial fields by calculating distances each 

marked point of a disturbance, from every grid-cell in the study area. This was necessary in 

order to incorporate such covariates that were used during model training into the SDM. 

 The spatial field of each disturbance was calculated by a two-step process. 

First, we generated ~500 points systematically across the study area’s marine space. At 

each point, we calculated the (log) distance to a disturbance. If a disturbance was a linear 

feature (like the maintenance dredging) or was multiple points (like piling), we took the 

minimum distance. The assumption behind using the minimum distance is that a dolphin’s 

response is likely strongest to the nearest disturbance source. Secondly, we used these 

points as inputs to a high-capacity spatial spline model, whose response variable was the 

distance-to-disturbance. Finally, using the trained model, we interpolated to all the remaining 

grids in the study area. An example of the 2022 distance-to-capital dredging is shown in Fig. 
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5. This figure shows how far different locations in the study area were from the dredging 

activities that occurred that year.  

 

Figure 5. Example of spatial field representation of distance to capital dredging in 2022. The 

X and Y axes represent UTM coordinates (Universal Transverse Mercator projection). The 

colours represent the distance in meters from the dredging activities. Green areas: Farthest 

from the dredging activity. Yellow areas: Intermediate distances. Pink areas: Closest to the 

dredging activity. The scale bar on the right shows values ranging from low (white) to high 

(green). These values correspond to the distance in meters from the dredging location.  
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2.4 Data analysis: Patterns of attendance to the port area 

 Land-based surveys 

We have analysed the land-based survey data using a combination of descriptive 

statistics, and statistical ensemble-modelling.  

This report provides the following descriptive statistics: total dolphin counts by 

species, and their behavioural compositions (resting, foraging, socialising, and travelling). 

These dependent variables are further summarised by covariates, including hours of day, 

presence of boats, presence of dredging, presence of rock dumping, as well as an overall 

comparison of the counts of dolphins in 2023 vs 2019 , 2023 vs 2020, and 2023 vs 2021. 

The later represent our primary inferential tool for testing whether there have been any 

changes on dolphin occurrence around the port area due to boats and CU construction 

activities.  

For statistical tests, we used a method called the Bayesian p-value (Gelman et al. 

1996). We used the occurrence records of 2019 as a type of “null model” (characterising 

pre-construction conditions) and calculated Bayesian p-values which compared dolphin 

presence in 2023 to those of previous years. Low Bayesian p-values suggest that the 

presence of dolphins was lower than what would be expected according to the 2019 null-

model, while high Bayesian p-values suggest that the 2023 data is consistent with the 2019 

null-model. 

Likewise, we used the presence/absence of dolphins during no-capital dredging , no-

maintenance dredging, no-rock dumping and no-piling periods across all years as the “null 

model” (characterising normal conditions of the dolphins) and calculated the probability of 

seeing dolphin counts as low as that observed during  capital dredging, maintenance 

dredging rock dumping, and piling activities. Low Bayesian p-values provide evidence that 

the counts of dolphins were lower that what would be expected according to the null models 
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of no capital dredging, no maintenance dredging, no-rock dumping and no-piling periods 

(i.e., a low-probability events according to the null-models), while high Bayesian p-values 

suggest that the counts during disturbance activities were no different than under normal 

background conditions. 

 

 

 

The above formalism is specific to the calculation of Bayesian p-values for binary-

occurrences. For counts/abundances, the same framework applies, but instead uses a 

Poisson-Gamma distribution as the null model. 

 Land-Station Ensemble Modelling 

 We used the R-package mgcv to model the presence/absence of snubfin and 

humpback dolphins per scan, as an ensemble of GAMs. In particular, we used logit-binomial 

response variable (i.e., presence/absence) and included various environmental predictors 

and anthropogenic indicators modelled as linear effects, including wind, BSS, swell, visibility, 
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glare, boats small, boats medium, boats large, boats fishing, boats recreational, boats total, 

boats industrial, dredging (both construction and maintenance dredging), rock dumping, and 

piling (aggregated as a single binary indicator). Unexplained temporal variation was 

modelled as three covariates: year-as-a-factor, time-of-day (as a 6-degree spline), time-of-

day with an interaction with year (as an 18-degree bivariate spline), and julian-day-of-year 

(as a 6-degree spline) and julian-day-of-year (as an 18-degree bivariate spline). 

 Due to the large number of related/overlapping covariates, we performed multi-model 

inference, capping the number of linear covariates at 3. We used the AIC to approximate 

posterior-model probabilities (a.k.a, AIC-weights). The weights were used for two purposes: 

i) to calculate model-averaged regression-coefficients/marginal-effects and frequentist p-

values for different covariates); and ii) for calculating the posterior inclusion probabilities 

(a.k.a, sum-of-AIC weights). The former is for estimating effects-sizes and performing 

significance tests, while the latter have a Bayesian interpretation: what is the probability that 

covariate X is important for dolphins' presence/absence. 

 We also estimated the model-averaged time-series of dolphin probability of 

occupancy (on the logit-scale) across years 2019, 2020, 2021, 2022 and 2023. 

3. Results 

3.1 Population demographics  

 Vessel based survey effort 

We surveyed a total of 2305.4 km on transect effort over 14 days between June 9 

and July 7, 2023, covering 1229.9 km in Cleveland Bay and 1075.5 km in Halifax Bay (Fig. 

6, Table 2). As planned, we completed six survey repeats of each bay (plus an additional; 

seven repeat), each representing a secondary period. Like last year, survey effort was 

higher in inshore areas (1849 km) than in offshore areas (456.5 km) due to the poor weather 

conditions encountered often in offshore areas (Beaufort sea state > 4). 
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a) 2019       b) 2020 

 

 

 

 

 

 

 

 

c) 2021       d) 2022 

 

e) 2023 

Figure 6. Map of survey area showing survey transects (solid black lines) and realized 

survey effort (light blue to dark red) in Cleveland and Halifax Bay in June-July a) 2019, b) 

2020, c) 2021, d) 2022 and e) 2023. Survey intensity scale represents the relative number 

of times a transect was visited, as an approximate visual indicator of observational intensity 

(for data-summary purposes only). 
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Table 2: Summary of boat-based survey effort (total length of transects completed on effort) 

and sea state conditions encountered in Cleveland Bay (CB) and Halifax Bay (HB) during 

each complete survey (secondary period) in the 2023 primary sample (June-July).  

Study area Sec. period Date/s 

Inshore Offshore Total Beaufort Sea 
State 

Transect 
length 
(km) 

Transect 
length 
(km) 

Transect 
length 
(km) 

min max mode 

Cleveland 
Bay 

1 09/06 144.8 25.9 170.7 0 3 1 

2 14/06 133.1 20.4 153.5 1 3 2 

3 18/06 144.8 1.4 146.2 1 3 2 

4 23/06 144.8 50.7 195.5 0 2 2 

5 26/06 144.8 41.7 186.5 1 3 2 

6 28/06 144.8 57.5 202.3 0 2 1 

7 05/07 144.8 30.4 175.2 0 3 2 

Total - 1001.9 228.0 1229.9 - - - 

Halifax 
Bay 

1 13/06 121.2 40.7 161.9 1 3 2 

2 15/06 121.2 0.0 121.2 1 3 2 

3 19/06 121.2 41.5 162.7 1 3 2 

4 24/06 120.5 17.5 138.0 0 2 0 

5 27/06 120.5 30.5 151.0 0 3 2 

6 29/06 121.2 50.4 171.6 0 3 2 

7 06/07 121.2 47.9 169.1 0 2 2 

Total - 847.1 228.5 1075.5 - - - 

 Grand total - 1849.0 456.5 2305.4 - - - 
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 Dolphin sightings, encounter rates and group sizes 

The vessel surveys in 2023 resulted in a total of 102 dolphin group sightings 

(including both on and off effort sightings) (Fig. 7e, Table 3). This consisted of 31 groups of 

snubfin dolphins (Fig. 7e), 50 groups of humpback dolphins (Fig. 7j) and 21 groups of 

bottlenose dolphins (Fig 7o). Other marine mammals sighted during 2023 surveys included 

dugongs (Fig 7t). In 2023, we only sighted a total of 2 groups of snubfin dolphins in Cleveland 

Bay (0.0016 dolphin group/km), while 29 were sighted in in Halifax Bay (0.0270 dolphin 

group/km). A total of 26 groups of humpback dolphins were sighted in Cleveland Bay 

(0.0211 dolphin group/km) and 24 in Halifax Bay (0.0223 dolphin group/km) (Table 3). 

Bottlenose dolphin groups were sighted 2 times in Cleveland Bay (0.0016 dolphin group/km) 

and 19 (0.0177 dolphin group/km) in Halifax Bay in 2023 (Table 3). 

Encounter rates (number of dolphin groups/km) of snubfin dolphins in Cleveland Bay 

declined over time, with the highest value in 2019 (0.0182 groups/km) and the lowest in 

2022 (0.0019 groups/km) and 2023 (0.0016 groups/km). In Halifax Bay, encounter rates 

remained stable between 2019 (0.0193 groups/km) and 2020 (0.0191 groups/km), 

decreased in 2021 (0.0140 groups/km), increased in 2022 (0.0214 groups/km) and 2023 

(0.0270 groups/km) (Table 3). 

In Cleveland Bay, humpback dolphin encounter rates increased from 2019 (0.0139 

groups/km) to 2020 (0.0256 groups/km), declined in 2021 (0.0219 groups/km) and 2022 

(0.0185 groups/km), and rose again in 2023 (0.0211 groups/km). In Halifax Bay, rates were 

highest in 2019 (0.0385 groups/km), decreased in 2020 (0.0347 groups/km) and 2021 

(0.0169 groups/km), increased in 2022 (0.0259 groups/km), anmd then decreased in 2023 

(0.0223 groups/km) (Table 3). 
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In Cleveland Bay, bottlenose dolphins were rarely recorded: encounter rates declined 

from 2019 (0.0032 groups/km) to zero in 2020, increased in 2021 (0.0030 groups/km) and 

2022 (0.0039 groups/km),and  dropped in 2023 (0.0016 groups/km). In Halifax Bay, 

encounter rates decreased from 2019 (0.0024 groups/km) to 2020 (0.0012 groups/km), 

increased in 2021 (0.0100 groups/km), rose slightly in 2022 (0.0101 groups/km), and peaked 

in 2023 (0.0177 groups/km) (Table 3). 

Groups of snubfin dolphins in 2023 varied in size from 1 to 24 individuals, with a mean 

(± SD) group size of 5.5 ± 4.4 (based on best estimates of group size) (Table 4). The group 

size of humpback dolphins ranged from 1 to 25 individuals, with a mean (± SD) group size 

of 3.9 ± 3 Bottlenose dolphin groups ranged from 1 to 15 individuals (mean ± SD = 5.3. ± 

2.9) (Table 4).  
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Figure 7. Location and group sizes of Australian snubfin dolphins (a-e), humpback dolphins (f-j), 

bottlenose dolphins (k-o) and other marine mammals (p-t) sighted in 2019, 2020, 2021, 2022 

and 2023 during boat surveys in Cleveland and Halifax Bays.  
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-e), humpback 

dolphins (f-j), bottlenose dolphins (k-o) and other marine mammals (p-t) sighted in 2019, 2020, 

2021, 2022 and 2023 during boat surveys in Cleveland and Halifax Bays. 
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-e), humpback 

dolphins (f-j), bottlenose dolphins (k-o) and other marine mammals (p-t) sighted in 2019, 2020, 

2021, 2022 and 2023 during boat surveys in Cleveland and Halifax Bays. 
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Figure 7 (continued). Location and group sizes of Australian snubfin dolphins (a-e), humpback 

dolphins (f-j), bottlenose dolphins (k-o) and other marine mammals (p-t) sighted in 2019, 2020, 

2021, 2022 and 2023 during boat surveys in Cleveland and Halifax Bays. 
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Table 3. Number of dolphin groups (n) and encounter rate (total number of dolphin groups 

sighted per km of transect surveyed) of snubfin, humpback and bottlenose dolphins in 

Cleveland and Halifax Bays during 2019, 2020, 2021, 2022 and 2023 boat surveys.  

Year Species 

Cleveland Bay Halifax Bay Total 

n 
Number of 

dolphin 
groups/km 

n 
Number of 

dolphin 
groups/km 

n 
Number of 

dolphin 
groups/km 

2019 
Snubfin 17 0.0182 16 0.0193 33 0.0187 

Humpback 13 0.0139 32 0.0385 45 0.0255 
Bottlenose 3 0.0032 2 0.0024 5 0.0028 

2020 
Snubfin 14 0.0138 16 0.0191 30 0.0162 

Humpback 26 0.0256 29 0.0347 55 0.0297 
Bottlenose 0 0.0000 1 0.0012 1 0.0005 

2021 
Snubfin 10 0.0100 14 0.0133 24 0.0117 

Humpback 22 0.0219 17 0.0162 39 0.0190 
Bottlenose 3 0.0030 10 0.0095 13 0.0063 

2022 
Snubfin 2 0.0019 19 0.0214 21 0.0110 

Humpback 19 0.0185 23 0.0259 42 0.0219 
Bottlenose 4 0.0039 9 0.0101 13 0.0068 

2023 
Snubfin 2 0.0016 29 0.0270 31 0.0134 

Humpback 26 0.0211 24 0.0223 50 0.0217 
Bottlenose 2 0.0016 19 0.0177 21 0.0091 
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Table 4. Group size and age composition of snubfin, humpback and bottlenose dolphins 

encountered during boat-based surveys in the Townsville region in 2019, 2020, 2021, 

2022 and 2023. 

 

 Photo-identification and capture-recapture data 

One hundred and seventeen individual snubfin and 170 individual humpback dolphins 

have been identified since sampling began in 2019 and the most recent survey in 2023 

(Table 5). Table 5 shows the numbers of snubfin and humpback dolphins captured and first 

identified in each bay in each year. The total numbers of each species captured and first 

Year Species 

Group size Group age composition 

Min Max Mean (SD) 

Mean proportion of 
adults, juveniles, 

calves (%) 
No. groups 

with 
juvenile or 

calf present A J C 

2019 

Snubfin 1 16 4.7 (3.6) 77 11 10 15 (45%) 

Humpback 1 30 5.18 (4.9) 77 11 10 28 (62%) 

Bottlenose 1 8 4.4 (2.6) 67 10 10 4 (80%) 

2020 

Snubfin 1 20 4.7 (3.9) 83 6 10 15 (50%) 

Humpback 1 20 4.7 (4.1) 75 13 12 32 (58%) 

Bottlenose 3 3 3 (NA) NA NA NA 1 (100%) 

2021 

Snubfin 1 12 4.1 (2.8) 81 10 8 13 (54%) 

Humpback 1 20 4 (3.6) 84 9 6 17 (43%) 

Bottlenose 1 10 3.5 (2.3) 63 23 14 10 (77%) 

2022 

Snubfin 1 26 4.6 (5.1) 83 6 11 6 (30%) 

Humpback 1 20 3.7 (2.8) 77 12 11 22 (52%) 

Bottlenose 1 16 4.9 (2.9) 76 20 4 9 (69%) 

2023 

Snubfin 1 24 5.5 (4.4) 87 2 11 14 (45%) 

Humpback 1 25 3.9 (3) 70 15 15 35 (70%) 

Bottlenose 1 15 5.3 (2.9%) 75 13 12 15 (71%) 
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captured in each year irrespective of the sites in which they were captured are also shown. 

These totals are not always equal to the sums of the numbers identified in each of the two 

bays. This is because some dolphins were captured in both bays in the same years and are 

not counted twice in the totals. It is pertinent to note that because a dolphin may have been 

first identified in a certain year should not be taken to mean that they were not present in 

previous years only that, if they were present in previous years, they were not captured. 

Captured or not, their numbers are represented in the model estimates. In 2023, 10 

individual snubfin and 51 humpback dolphins were photo-identified in Cleveland Bay, and 

52 snubfin and 40 humpback dolphins were photo-identified in Halifax Bay (Table 5). 

Table 5. Numbers of individual snubfin and humpback dolphins captured and first identified 

in each bay in each year from 2019 to 2023. The total numbers captured and first identified 

in each year irrespective of the sites on which they were captured are also shown. 

Species Bay Number captured/First captures 
2019 2020 2021 2022 2023 

Snubfin 
Cleveland 28/28 26/8 15/5 1/0 10/4 

Halifax 38/38 26/10 16/2 42/26 52/21 
Total 57/57 49/14 29/4 43/26 54/16 

Humpback 
Cleveland 16/16 25/16 25/9 29/13 51/32 

Halifax 42/42 39/25 29/8 32/20 40/24 
Total 54/54 56/30 50/11 58/29 82/46 

 

Although some dolphins first captured in a given year may have been present but 

undetected in earlier years, the sharp increase in new identifications is notable. In particular, 

large numbers of snubfin dolphins were first captured in Halifax Bay in 2022 and 2023, while 

humpback dolphins showed a marked increase in new identifications in Cleveland Bay in 

2023. These spikes in first captures suggest that immigration into the study area may have 

occurred in recent years, particularly for snubfins in Halifax Bay and humpbacks in Cleveland 

Bay.. 
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The MSCRD analyses all data on each species captured in both bays in all five years. 

Previous reports have demonstrated that no biases were introduced by the inclusion of off-

effort data. Thus, we use both on-effort and off-effort data for the MSCRD analyses of each 

species. Good data for both bays in all four years are required for the model to return reliable 

estimates for each species. This was not the case for snubfin dolphins in 2022 or 2023, with 

only one having been captured in Cleveland Bay in 2022 and ten having been captured all 

on one day in 2023. How these deficiencies were managed in the analysis is subsequently 

discussed in detail. Considering the combined on- and off-effort data (Table 6) in the original 

six secondary samples (PS_SS) data for both species, there were many zero or very low 

numbers of captures in both bays in all years. Models using these data would return many 

poorly or improperly estimated parameters, i.e., with large or zero standard errors. Thus, the 

data from the originally planned six secondary samples were inadequate to support 

informative capture-recapture population models. Fortunately, an even number of secondary 

samples was planned in anticipation of small numbers of captures being made to allow a 

strategy of collapsing each consecutive pair of secondary samples into one (1&2=1, 3&4=2, 

5&6=3) to increase the per secondary sample numbers of captures (Table 6). As a result, 

the data were collapsed to three secondary samples (PS_SS3) for MSCRD analyses of both 

dolphin species.
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Table 6. Number of individual snubfin and humpback dolphins identified and number of captures by year, species, bay, on and off effort, 

and secondary sample. PS_SS refers to the originally planned six secondary samples; PS_SS3 refers to three secondary samples as 

collapsed from PS_SS (1 & 2 =1, 3 & 4 = 2, 5 & 6 = 3).  

Year Species Bay No. of Individuals 
identified Effort 

PS_SS PS_SS3 
s1 s2 s3 s4 s5 s6 S1 S2 S3 

2019 

Snubfin 
Cleveland 

27 On only 8 3 9 0 12 6 11 9 13 
28 On + off 8 3 9 11 12 6 11 15 13 

Halifax 
36 On only 13 1 11 0 12 10 14 11 20 
38 On + off 13 1 11 2 12 10 14 13 20 

Humpback 
Cleveland 

12 On only 3 3 9 3 0 0 6 10 0 
16 On + off 3 3 10 5 5 0 6 12 5 

Halifax 
42 On only 4 19 1 10 9 17 20 11 25 
42 On + off 4 19 1 10 9 17 20 11 25 

2020 

Snubfin 
Cleveland 

26 On only 6 0 2 10 4 7 6 11 11 
26 On + off 6 0 2 10 4 7 6 11 11 

Halifax 
26 On only 0 6 7 8 10 8 6 15 18 
26 On + off 0 6 7 8 10 8 6 15 18 

Humpback 
Cleveland 

25 On only  1 2 8 6 16 8 3 11 20 
25 On + off  1 2 8 6 16 8 3 11 20 

Halifax 
39 On only  3 16 5 10 13 5 19 14 18 
39 On + off  3 16 5 10 13 5 19 14 18 

2021 

Snubfin 
Cleveland 

15 On only  4 7 1 1 3 0 11 2 3 
15 On + off  4 7 1 1 3 0 11 2 3 

Halifax 
16 On only  0 6 4 1 1 6 6 5 7 
16 On + off  0 6 4 1 1 6 6 5 7 

Humpback 
Cleveland 

23 On only  11 3 0 9 10 2 13 9 11 
25 On + off  11 3 0 9 10 7 13 9 14 

Halifax 
28 On only  16 1 5 2 0 11 17 7 11 
29 On + off  16 1 5 2 0 12 17 7 12 

2022 Snubfin Cleveland 1 On only  0 0 0 0 0 1 0 0 1 
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Year Species Bay No. of Individuals 
identified Effort 

PS_SS PS_SS3 
s1 s2 s3 s4 s5 s6 S1 S2 S3 

1 On + off  0 0 0 0 0 1 0 0 1 

Halifax 
40 On only  0 4 12 1 13 17 4 13 25 
42 On + off  0 4 13 4 13 17 4 16 25 

Humpback 
Cleveland 

21 On only  0 0 16 6 3 5 0 19 6 
29 On + off  6 1 16 6 3 11 7 19 11 

Halifax 
31 On only  0 2 0 9 4 21 2 9 22 
32 On + off  3 2 0 9 4 21 4 9 22 

2023 

Snubfin 
Cleveland 

10 On only  0 0 0 0 0 10 0 0 10 
10 On + off  0 0 0 0 0 10 0 0 10 

Halifax 
40 On only  1 0 6 4 6 27 1 10 33 
52 On + off  1 1 7 8 6 34 2 19 40 

Humpback 
Cleveland 

47 On only  10 2 4 0 23 14 10 4 36 
51 On + off  11 2 6 9 23 19 11 9 38 

Halifax 
30 On only  0 3 6 11 9 10 3 15 17 
40 On + off  0 4 8 11 9 18 4 17 24 
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 Goodness of fit 

The goodness of fit test statistics from U-Care were, for the snubfin data 𝜒𝜒2 = 6.711,

𝑑𝑑𝑑𝑑 = 12.00,𝑝𝑝 = 0.876 and, for the humpback data 𝜒𝜒2 = 6.973,𝑑𝑑𝑑𝑑 = 15,𝑝𝑝 = 0.961 indicating 

no evidence of lack of fit between the models and the data for either species. Consequently, 

no adjustment was made to 𝑐̂𝑐 (i.e., 𝑐̂𝑐 = 1) and AICc was used for model comparisons. 

 Models 

Capture probabilities were highly variable over years and secondary samples 

(PS_SS3) for both species and displayed no evident pattern for either. Consequently, 

capture probability was fitted as fully time varying by year and secondary sample (PS_SS3) 

in all models except as described below. The apparent survival, movement and temporary 

emigration parameters refer to the intervals between years (2019 to 2020, 2020 to 2021, 

2021 to 2022, and 2022 to 2023). In principle, separate estimates may be obtained for each 

interval. These parameters were typically estimated with wide confidence intervals and were 

often fitted as constant over intervals (yielding averages for the three intervals). This was a 

practical way of obtaining useful and reasonably reliable estimates of meaningful 

parameters given limited numbers of captures. 

Exceptions to fitting the apparent survival, movement, and temporary emigration 

parameters as constant over intervals were made in response to the near absence of snubfin 

dolphins in Cleveland Bay in 2022 with only one having been captured, and limited captures 

(10) in 2023 which all occurred on only one day. The approach to fitting these models is 

described subsequently. 

It is likely that very few snubfin dolphins visited the Bay during the sampling period in 

2022, with very few sightings from either the vessel surveys (2 sightings) or land-based 

surveys (one sighting). The absence of snubfin dolphins in Cleveland Bay in 2022, following 
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estimates of approximately 30-40 in previous years, may have been due to a decrease in 

their apparent survival (due to deaths or permanent emigration from the Bay), an increase 

in their rate of movement from Cleveland to Halifax Bay, or an increase in their temporary 

emigration from the Townsville area (absent from both Cleveland and Halifax Bays). 

While more snubfin dolphins were captured in Cleveland Bay in 2023 than 2022, that 

they were all captured on only one day is problematic for the analysis. Since capture-

recapture models rely on recaptures across multiple sampling events to estimate population 

size, the anomalous capture pattern in 2023 affects not only the 2023 estimates but also the 

2022 estimates. If capture probability in 2023 was artificially inflated on one day, it could 

lead to misleading estimates of survival and movement, making 2022’s population size 

estimates unreliable as well. Capture-recapture models assume that, within a given season, 

the population size remains relatively stable. However, if all captures in 2023 occurred on a 

single day, it suggests that either: 1) The dolphins were not consistently present throughout 

the season (i.e., temporary emigration), or 2) Sampling conditions or effort were significantly 

different on that particular day compared to the rest of the season. Either scenario 

contradicts the assumption of a constant number of dolphins in Cleveland Bay. If the high 

number of captures in 2023 were due to a temporary aggregation event rather than a true 

reflection of the population size, the model could overestimate the population for that year. 

Conversely, if the model assumes that dolphins were equally available for capture 

throughout the season, but in reality, they were not, then it could underestimate capture 

probability and inflate the population estimate. 

Although the global goodness of fit test found no evidence of lack of fit of the data to 

the model, the pattern of captures in 2023 would be very unlikely to have occurred if the 

assumptions of the model were met, notably that the number of snubfin dolphins in 
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Cleveland Bay was constant throughout the season. Consequently, not only are the 

estimates for snubfin dolphins in 2022 suspect but so also are the estimates for 2023. 

Although changes in the estimates of the apparent survival, movement, and 

temporary emigration parameters in the MSCRD model might theoretically describe the 

events underlying the changes in capture rates in 2022 and 2023 from those in 2019, 2020 

and 2021, the capacity of the model to detect such changes as significant effects is limited 

by the volume of data. There is very little information in the data for Cleveland Bay in 2022 

with only one capture, and the information in the ten captures in 2023 is unreliable as 

described above. 

Captures were made on only one day in both 2022 and 2023. The capture probability 

for these years was modelled as having been constant over secondary samples to allow the 

models to run and estimates to be produced. While we might suspect that there was an 

increase in movements out of Cleveland Bay to Halifax Bay or that there was an increase in 

temporary emigration from Cleveland Bay between 2021 and 2022, and that there may have 

been an increase in movements from Halifax Bay or return from temporary emigration 

between 2022 and 2023, there are not sufficient or sufficiently reliable data for these affects 

to be reliably estimated. 

While estimates from models with the capture probabilities in Cleveland Bay modelled 

as constant over secondary samples are reported here, the estimated numbers of snubfin 

dolphins in Cleveland Bay in 2022 and 2023 are considered unreliable. As a check on the 

bias involved, the best fitting model was refitted with the mean (= ~ 0.3) of the estimated 

capture probabilities from 2019 to 2021 for snubfin dolphins in Cleveland Bay in 2022 and 

2023. This model did not estimate the number for 2022 and returned one as the number 

captured and estimated 15 snubfin dolphins in Cleveland Bay in 2023. 
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To obtain evidence of increased movement from Cleveland to Halifax Bay between 

2021 and 2022, the rate of movement was fitted as equal between 2019 to 2020 and 2020 

to 2021, different between 2021 and 2022 and zero between 2022 and 2023 (there was only 

one to move). In respect of movements in the other direction, from Halifax Bay to Cleveland 

Bay, the rates were fitted as equal between 2019 to 2020 and 2020 to 2021, zero between 

2021 and 2022 (only one was found in Cleveland Bay in 2022) and different between 2022 

and 2023. 

With only one snubfin dolphin captured in Cleveland Bay in 2022, reliable estimates 

cannot be obtained for movement from Halifax Bay to Cleveland Bay between 2021 and 

2022 nor between Cleveland Bay and Halifax Bay between 2022 and 2023. These 

constraints also apply to temporary emigration from Cleveland Bay between 2022 and 2023 

and re-immigration to Cleveland Bay between 2021 and 2022. All models were fitted with 

these parameters set to zero. Models with movements between bays or temporary 

emigration fitted as constant over intervals without these constraints may produce 

apparently reasonable estimates but these are more cleanly estimated with the constraints 

applied. 

Attempts to model variation in temporary emigration movements over time yielded 

very small estimates of emigration with very wide confidence intervals in all periods. One 

model with temporary emigration was found to yield reasonable estimates: this model had 

temporary emigration from Cleveland Bay only, between 2019 to 2020 and 2020 to 2021 for 

both emigration and re-immigration, emigration between 2021 and 2022, and re-immigration 

between 2022 and 2023. All attempts to model temporary emigration from and to Halifax 

Bay produced estimates that were either very small with a large standard error (emigration) 

or very large with a standard error of zero (re-immigration) indicating improper estimation. 
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Consequently, temporary emigration from and to Halifax Bay was fixed at zero and not 

estimated in all models. 

Subject to the constraints described above, movements between sites were modelled 

as constant over time and of even flow (equal in both directions), random (complementary 

between directions) or Markovian (flows in the two directions independent) forms. Apparent 

survival was modelled as constant over time and either equal or different between sites. 

Models that generated improper estimates or which attracted less than one percent of the 

AIC weight were eliminated leaving a final set of six models for averaging. 

For humpback dolphins, apparent survival was fitted as equal or different for the two 

sites, movement between sites was fitted as equal or different in both directions, and 

temporary emigration was fitted as zero for Cleveland Bay and equal or different from and 

to Halifax Bay. Even flow structures were clearly superior to random structures and only 

these and the Markovian structures (different between directions) were included in the final 

set of models. The final model set for averaging included six models. 
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 Australia snubfin dolphin: population parameters 2019-2023 

Six models fitted to the snubfin dolphin data were considered to have yielded reliable 

estimates of all population parameters, except for abundance. Model averaged estimates of 

the parameters are reported in Table 7. 

The proportion of snubfin dolphins bearing distinctive marks was estimated at 0.90 

with SE = 0.012. This was employed together with the estimated sizes of the marked 

populations to calculate estimated total population sizes (Table 7). The total population sizes 

are plotted with their 95% confidence intervals for Cleveland and Halifax Bays in each year 

2019 to 2023 in Figure 8. The total estimated abundance of snubfin dolphins in Cleveland 

Bay was reasonably consistent over the first three years of survey at 31 in 2019, 42 in 2020 

and 34 in 2021 (Fig. 8). The number of captures declined sharply in 2022, with a slight 

recovery in 2023. However, as previously discussed, the abundance estimates for these 

years (Table 7) are considered unreliable, with wide confidence intervals and likely 

overestimation. A model that assumed the probability of capture in these years was the 

same as the mean from the first three years failed to yield an estimate for 2022 and 

estimated 15 for 2023. The estimated total abundance of snubfin dolphins in Halifax Bay 

decreased from 56 in 2019 to 36 in 2020 and 33 in 2021 before increasing greatly to 117 in 

2022 and falling to 76 in 2023 (Table 7, Fig. 8).  

Estimates for the average rate of apparent survival (alive and remaining in the bay) 

of snubfin dolphins in the intervals between consecutive years between 2019 and 2023 were 

very similar for the two bays and quite high at an average of 0.855 (95% CI = 0.71 – 0.93). 

With an estimated rate of biological survival of snubfin dolphins of 0.95 pa (Taylor et al. 

2007), the estimated rate of permanent emigration is 10% pa, i.e., 10% have left each Bay, 

have not moved to the other, and are not expected to return. 
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The rate of movement between Cleveland Bay and Halifax Bay between 2019 and 

2020, and 2020 and 2021 was 0.16. This increased to 0.40 between 2021 and 2022 while 

movement out of Cleveland Bay could not be estimated between 2022 and 2023 with only 

one dolphin captured in Cleveland Bay in 2022. The rate of movement from Halifax Bay to 

Cleveland Bay between 2019 and 2020, and 2020 and 2021 was similar to the rate of 

movement in the other direction at 0.18. While the rate of movement from Halifax Bay to 

Cleveland Bay between 2021 and 2022 could not be estimated with only one dolphin 

captured in Cleveland Bay in 2022, the rate decreased to 0.08 between 2022 and 2023. 

Although data limitations have posed difficulties for estimation, these estimates provide the 

first evidence of movement out of Cleveland to Halifax Bay in the year before 2022 and 

indicate that the rate of return from Halifax to Cleveland Bay was only moderate between 

2022 and 2023. It may be pertinent that the estimates supporting these conclusions were 

yielded by models from which the estimated number present in Cleveland Bay in 2022 is 

likely to be too high (as described above) and the estimate of movement out of Cleveland 

into Halifax Bay between 2021 and 2022 (0.40) may be too low. 

The capacity of the models to estimate temporary emigration was severely limited by 

the very small numbers present in Cleveland Bay in 2022 and 2023 and relatively small 

numbers of captures generally. It was not possible to estimate temporary emigration from 

and to Halifax Bay, and the estimates for temporary emigration from and to Cleveland Bay 

were near zero.
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Table 7. Australian snubfin dolphin: Multistate Closed Robust Design (MSCRD) model averaged 

estimates of population parameters, their standard errors (SE) and 95% confidence intervals (lower 

and upper limits) for Cleveland Bay (CB) and Halifax Bay (HB). All estimates are probabilities except 

population sizes.  

Parameter* Bay Year Estimate SE LCI UCI 
Apparent survival (φ) CB 2019-2023 0.85 0.06 0.71 0.93 

Apparent survival HB 2019-2023 0.86 0.04 0.75 0.93 

Movement between sites (ψMS) CB to HB 2019-2021 0.16 0.05 0.08 0.30 

 CB to HB 2021-2022 0.40 0.15 0.17 0.70 

Movement between sites HB to CB 2019-2021 0.18 0.06 0.09 0.33 

 HB to CB 2022-2023 0.08 0.08 0.01 0.42 

Temporary emigration from (ψTE) CB 2019-2021 0.01 0.05 0.00 0.99 

 CB 2021-2022 0.00 0.00 0.00 0.00 

Temporary emigration from HB NIL (fixed) NA NA NA NA 
Return of previously emigrated dolphins to (ψTE) CB 2019-2021 0.01 0.05 0.00 0.99 

Return of previously emigrated dolphins to  CB 2022-2023 0.00 0.00 0.00 0.00 
Marked population size (Nmarked) CB 2019 28 3.42 21.61 35.00 

Marked population size  CB 2020 38 7.72 22.65 52.92 

Marked population size  CB 2021 31 9.48 12.50 49.66 

Marked population size SEE TEXT CB 2022 14 20.13 -25.59 53.32 

Marked population size SEE TEXT CB 2023 33 17.37 -1.31 66.79 

Marked population size  HB 2019 50 9.53 31.73 69.09 

Marked population size  HB 2020 32 4.00 24.37 40.04 

Marked population size  HB 2021 30 8.72 13.02 47.20 

Marked population size  HB 2022 105 23.71 58.97 151.91 

Marked population size HB 2023 68 10.22 48.20 88.27 

Total population size (Ntotal) CB 2019 31 3.82 24 40 

Total population size  CB 2020 42 8.60 28 63 

Total population size  CB 2021 34 10.54 19 62 

Total population size  CB 2022 16 * 22.37 2 124 

Total population size  CB 2023 37 * 19.31 14 97 

Total population size  HB 2019 56 10.61 38 81 

Total population size  HB 2020 36 4.47 28 45 

Total population size  HB 2021 33 9.70 19 58 

Total population size  HB 2022 117 26.39 75 181 

Total population size  HB 2023 76 11.40 56 101 
 

*Parameters:  

• Nmarked: estimate of the “marked” population size. 

• Ntotal: estimate of the total population size considering proportion of unmarked animals in the population. 

• φ: estimate of apparent survival. 

• ψMS: estimate of transition probability/movement between sites. 

• ψTE: estimate of temporary emigration. 

* These estimates are considered unreliable. See text.
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Figure 8. Estimates of the total population size of Australian snubfin dolphins with 95% 

confidence intervals in Cleveland (CB) and Halifax Bays (HB) for the years 2019 to 2023. 

The estimates for Cleveland Bay in 2022 and 2023 are considered unreliable (*) and likely 

overestimated (see text).  

 Australian humpback dolphin: population parameters 2019-2023. 

Six models for the humpback data were considered to have yielded reliable estimates 

of all parameters. Model averaged estimates of the parameters are reported in Table 8.  

The proportion of humpback dolphins bearing distinctive marks was estimated at 0.88 

with SE = 0.011. This was employed together with the estimated sizes of the marked 

populations to estimate total population sizes (Table 8). The total population sizes are 

plotted with their 95% confidence intervals for Cleveland and Halifax Bays for the years 2019 

to 2023 in Figure 9. The number of humpback dolphins present in Cleveland Bay increased 

from 19 in 2019 to 33 in 2020 and 2021 and increased again to 49 in 2022 and 90 in 2023 

(Fig. 9).  
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There were more humpback dolphins present in Halifax than Cleveland Bay in most 

years, with 65 in 2019, 53 in 2020, 42 in 2021, and 77 in 2022 (Fig. 9, Table 8). However, 

in 2023, Cleveland Bay had more humpback dolphins than Halifax Bay, with an estimated 

90 individuals (Fig. 9, Table 8). It appears that as suggested from the relatively large 

numbers of humpback dolphins first identified in both bays in the last two years (Table 5) 

that there may have been immigration into both bays in these years. 

Estimates for the average rate of apparent survival (alive and remaining in the bay) 

in the intervals between consecutive years between 2019 and 2023 were reasonably high 

and the same for both bays at 0.86 pa (Table 8). With an estimated rate of biological survival 

of humpback dolphins of 0.97 pa, the estimated rate of permanent emigration was 11.3% 

pa from both bays. Dolphins that have permanently emigrated from each Bay have not 

moved to the other and are not expected to return. 

The average rates of movement between the Bays in the intervals between 

consecutive years between 2019 and 2023 were equal in both directions at 0.18 pa (i.e. 

approximately 18% of the marked individuals in one bay moved to the other bay between 

any two consecutive years, Table 8). That’s a substantial proportion (18%) in the context of 

ecological and demographic processes, especially for species like dolphins that often show 

strong site fidelity.  

Estimates of temporary emigration from each Bay differed at zero for Cleveland Bay 

and at 0.27 pa for Halifax Bay; suggesting that while all humpback dolphins present in 

Cleveland Bay during one sampling season were estimated to also be present in the next, 

about 27% of humpback dolphins present in one sampling season in Halifax Bay were 

absent for the duration of the next. Return of previously emigrated humpback dolphins to a 

Bay was estimated at zero for Cleveland Bay and at 0.28 pa for Halifax Bay.  
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Table 8. Australian humpback dolphins: Multistate Closed Robust Design (MSCRD) model 

averaged estimates of population parameters, their standard errors (SE) and 95% 

confidence intervals (lower and upper limits) for Cleveland Bay (CB) and Halifax Bay (HB). 

All estimates are probabilities except population sizes.  

Parameter* Bay Year Estimate SE LCI UCI 
Apparent survival (φ)  CB 2019-2023 0.86 0.04 0.75 0.93 

Apparent survival  HB 2019-2023 0.86 0.06 0.69 0.95 

Movement between sites (ψMS) CB to 
HB 2019-2023 0.18 0.04 0.12 0.26 

Movement between sites HB to 
CB 2019-2023 0.18 0.03 0.12 0.25 

Temporary emigration from (ψTE) CB 2019-2023 0.00 0.00 0.00 0.00 

Temporary emigration from HB 2019-2023 0.27 0.09 0.13 0.47 

Return of previously emigrated dolphins to (ψTE) CB 2019-2023 0.00 0.00 0.00 0.00 

Return of previously emigrated dolphins to HB 2019-2023 0.28 0.15 0.08 0.64 

Marked population size (Nmarked) CB 2019 17 2.07 13.43 21.56 

Marked population size CB 2020 29 4.01 21.28 37.01 

Marked population size CB 2021 29 3.60 22.39 36.52 

Marked population size CB 2022 43 7.57 28.46 58.15 
Marked population size CB 2023 79 12.30 55.20 103.42 

Marked population size HB 2019 57 9.60 37.87 75.51 

Marked population size HB 2020 47 7.56 31.96 61.60 

Marked population size HB 2021 37 6.06 24.75 48.51 

Marked population size HB 2022 68 18.40 32.10 104.24 
Marked population size HB 2023 74 18.28 37.81 109.46 

Total population size (Ntotal) CB 2019 19 2.36 15 25 

Total population size CB 2020 33 4.58 25 43 

Total population size CB 2021 33 4.11 26 42 

Total population size CB 2022 49 8.62 35 69 
Total population size CB 2023 90 14.02 66 122 

Total population size HB 2019 65 10.94 47 90 

Total population size HB 2020 53 8.62 39 73 

Total population size HB 2021 42 6.91 31 58 

Total population size HB 2022 77 20.93 46 130 
Total population size HB 2023 84 20.80 52 136 

 

*Parameters:  
• Nmarked: estimate of the “marked” population size. 
• Ntotal:estimate of the total population size taking into account proportion of unmarked animals in the 
population. 
• φ: estimate of apparent survival. 
• ψMS: estimate of transition probability/movement between sites. 
• ψTE: estimate of temporary emigration. 
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Figure 9. Estimates of total population size with 95% confidence intervals of Australian 

humpback dolphins in Cleveland (CB) and Halifax Bays (HB) for the years 2019 to 2023. 
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3.2 Spatial distribution modelling 

 Model performance and spatial predictions 

There were 31 encounters of snubfin dolphins and 50 of humpback dolphins in 2023. 

There were 783 points used as pseudo-zero encounters for the SDM of snubfin dolphins 

and 764 for humpback dolphins.  

Overall, the final ensemble models for generating species distribution plots for 2023 

had good predictive performance but had slightly lower performance in comparison to 2021. 

The ensemble model for humpback dolphins obtained a global cv-ROC-AUC of 0.833 (down 

slightly from last year’s value of 0.840) and a cv-precision-recall-AUC of 0.38 (compared to 

last year’s performance of 0.462). For snubfins, the global cv-ROC-AUC was 0.833 

(compared to last year’s 0.853); the cv-precision-recall-AUC was 0.217 (compared to last 

year’s 0.300). 

The per-year predictive performance (cv-ROC-AUC) for humpback dolphins, using 

the 2023 ensemble model, were: 0.86, 0.95,0.77,0.76, and 0.69 for survey-years 2019 to 

2023, respectively. These values were nearly the same as previous models’ per-year values, 

with 2023 being a drag on performance. The per-year predictive performance (cv-ROC-

AUC) for humpback dolphins, using the 2023 ensemble model, were: 0.86, 0.91, 0.74, 0.83, 

and 0.79 for survey-years 2019, 2020, 2021, 2022, and 2023 respectively. These values 

were lower for 2019 and 2020 compared to past years’ models, but higher for 2021 and 

2022. The model struggled with 2023’s data, but less so than the 2020 dataset. 

 Relative Variable Importance 

The relative variable importance values (RVI) are shown in Figure 10. The RVIs 

measure how much each covariate contributes to the reduction in the model risk-function 
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(negative log-likelihood). In other words, it indicates which predictors are responsible for the 

model's overall goodness-of-fit. 

For snubfin dolphins, the order of RVIs was: an unexplained spatial process (45%), 

log-distance to rivers (12%), depth (9.9%), log-distance to land (6.6%), log- distance to 

foreshore (5.3%), salinity (4.2%), year as a categorical variable (3.5%), log-distance to 

maintenance dredging (2.5%), log-distance to capital dredging (2.1%), SST (1.7%), log-

distance to seagrass (1.7%), and Julian day (1.6%). For those covariates with a contribution 

greater than 5%, the ordering of covariates was similar to last year’s models, however, the 

unexplained spatial processed was more predominant this year than last year (32% RVI in 

2022). 

For humpbacks, the most important variable was an unexplained spatial process (i.e., 

spatial base-learners), accounting for 29% of risk-minimisation. Thereafter, the most 

important variables were log-distance to land (20%), then log-distance to rivers (15%), SST 

(9.3%), depth (8.2%), year as a categorical variable (3.8%), counts of large boats (3.7%), 

log-distance to reefs (2.2%), counts of fishing vessels (1.7%), swell (0.9%), Julian day 

(0.9%) and log-distance to maintenance dredging (0.8%). All covariates thereafter had RVIs 

of less than 0.7%.  

 To help intuit the significance of covariates with a small RVI, one can 

benchmark them against year-as-a-categorical variable: at ~3.5% RVI for either species, its 

influence can be readily visualised and understood as the variation between the per-year 

SDM plots. Year was used as a benchmark as it is a biologically intuitive, moderately 

influential factor (≈3.5% variation for both species), providing a clear reference point against 

which less intuitive predictors can be compared. Since the RVI for 'log-distance to 

maintenance dredging' in snubfin dolphins is around 2.5%, which is similar in magnitude to 

the 3.5% RVI of the year-as-a-categorical variable, this suggests that the influence of 
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distance to maintenance dredging on snubfin dolphin distribution is almost as important as 

the variation in species distributions between years. This comparison helps to convey that 

while the effect of log-distance to maintenance dredging is slightly smaller, it has a similar 

level of influence on species distribution as temporal factors (like year).  

 As mentioned in past reports, the presence of multi-collinearity among 

covariates means that it is difficult to uniquely assign RVI to any one particular covariate 

(Bühlmann et al. 2013), especially when there is a highly flexible non-linear spatial spline 

that can act as a “catch-all” representation of the spatial variation that would otherwise be 

more causally related to other interpretable covariates. 
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a)  
 

 
b)  

Figure 10. The relative variable importance (contribution to risk-minimisation) of each 

covariate considered in ensemble species distribution modelling of a) Australian snubfin and 

b) humpback dolphins based on data collected in 2023. 
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 Likelihood Ratio Tests Disturbance Covariates 

 We used a 5 times10-fold cross-validation to compare the CV-likelihood of the 

base-model versus a reduced model that dropped the five disturbance covariates (distance 

to piling, distance to rock dumping, distance to capital dredging, distance to maintenance 

dredging, and minimum distance to any disturbance. Note that, within this set of covariates, 

only maintenance dredging is classified as a non-CU activity. Likelihood ratios above 1 

indicate support for the reduced model without the disturbance covariates, whereas ratios 

below 1 indicate support for the full model that includes the disturbance covariates. 

 The CV-likelihood ratio for humpbacks was 2.4-33 << 1, with a cross-validation 

p-value of 0.2. This indicates substantial support for the full model and provides strong 

evidence that the disturbances had some effect. Taken together with the RVI results, the 

effect may be mostly driven by the role of maintenance dredging. The cross-validation p-

value suggests that a “no effect” null-model cannot be ruled out completely. 

 The CV-likelihood ratio for snubfin dolphins was 0.055 <1, with a cross-

validation p-value of 0.2. This indicates solid support for the full model and provides 

evidence that the disturbances had some effect. In particular, based on the RVI results, it is 

likely that dredging (both maintenance and construction) was responsible for these results. 

The cross-validation p-value suggests that a “no effect” null-model cannot be ruled out 

completely. 

 Covariate Two-Way Interaction Partial Plots 

 We used partial plots of two-way interactions to understand the marginal 

functional relationship between species’ abundance and pairs of interacting covariates. 

These were done exclusively through two-way interaction plots (Fig. 11), due to the inherent 

interactive nature of the underlying machine-learning method. 
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 There are too many plots to present here (they are available upon request). 

Instead, we subjectively describe the functional relationships simple as large increase, 

moderate increase, small increase, small decrease, moderate decrease, and large 

decrease, in additional to any other notes.  

Snubfin Functional Relationships with Covariates (2023) 

• Distance to rivers – strong decrease. (i.e., density of species increases as distance 

to river decreases). 

• Depth – moderate decrease (i.e., density of species increases as water depth 

decreases). 

• Distance to land – moderate increase (i.e., density of species increases as distance 

to land increases). 

• Distance to foreshore – moderate decrease (i.e., density of species increases as 

distance to shore decreases). 

• Salinity – small increase (i.e., density of species increases as salinity increases). 

• Distance to maintenance dredging – small decrease (i.e., density of species 

increases as distance to maintenance dredging decreases). 

• Distance to capital dredging – small increase (i.e., density of species increases as 

distance to capital dredging increases). 

• SST – small increase (i.e., density of species increases as SST increases). 

• Distance to seagrass – small increase (i.e., density of species increases as distance 

to seagrass increases). 

• Julian day of year – small increase (i.e., density of species increases as Julian day 

increases). 

Humpback Functional Relationships with Covariates (2023) 



 

78 
 

• Distance to land – strong increase (i.e., density of species increases as distance to 

land increases). 

• Distance to rivers – strong decrease (i.e., density of species increases as distance to 

river decreases). 

• Large boats – moderate increase (i.e., density of species increases as number of 

large boats increases). 

• Distance to reefs - moderate increase (i.e., density of species increases as distance 

to reefs increases, only present among a few interactions). 

• SST – small increase (i.e., density of species increases as SST increases). 

• Depth – small decrease (i.e., density of species increases as water depth decreases). 

• Fishing boats – small decrease (i.e., density of species increases as number of 

fishing boats decreases, depends on interaction with large boats).  

• Swell – small increase (i.e., density of species increases as swell increases) 

• Julian day – small increase (i.e., density of species increases as Julian day 

increases). 

• distance to maintenance dredging (Year 3) – small increase (i.e., density of species 

increases as distance to maintenance dredging increases). 

The reader should note that the relationships could change under multi-way 

interactions and different years. 
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Figure 11. Example of two-way marginal plot for snubfin's (predicted) functional 

relationship with distance to capital dredging (BHD) and distance to seagrass. 

 Plots and Summaries of Spatially Varying SDM Components 

The spatial partial plots of snubfin and humpback dolphins across the survey area 

are shown in Figures 12 and 13 respectively. These plots show the probability of occurrence 

(Figs. 12a-e and 13a-e) and the conditional group size (i.e., the size of an encounter, if a 

group is present) per year (Figs. 12f-j and 13f-j). These two components, the occupancy, 

and conditional counts, constitute the zero-inflated Poisson bivariate distribution. The plots 

also show the integration of the two processes, the expected counts, which is the probability 
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of occupancy multiplied by the conditional counts per year (Figs. 12k-o and 13k-o). Note 

that the influence of temporal covariates (time-of-day, day-of-year) and environmental 

conditions (swell, BSS, glare, visibility) have been removed by conditioning the plots on the 

global averages of temporal-covariates. For those years in which a log-distance-to-

disturbance was present (like distance-to-maintenance dredging or distance-to-rock 

dumping), the SDM the model is conditioned on the disturbance being present. 

 The 2023 spatial occurrence of snubfin dolphins (Fig 12e) and their relative 

density (Fig 12o) shows a marked departure from earlier years: for instance, prior years 

had a high occupancy and high-density region north and to the east of Port of Townsville, 

along the shore of Cleveland Bay, which has disappeared in 2023 (Fig. 12e). In contrast, 

the 2023 spatial occupancy distribution and relative density shows a new elongated 

narrow band of moderate-occupancy and density along the entire coast of Halifax Bay, 

whose past-year equivalent was more broken and separated along the HB shore (Fig. 

12e). 

 The spatial occupancy (Fig 13e) and relative densities of humpback dolphins 

(Fig. 13o) seem to exhibit a similar patterning that was present in 2022 (albeit at much lower 

absolute densities). There was high occupancy and density to the north and to the east of 

Port of Townsville, along the shore of Cleveland Bay , as well as a large expanse of high-

occupancy and density between Saunders beach and Cape Pallarenda along the shore of 

Halifax Bay (Fig. 13e). Unlike snubfins, humpbacks were consistently present in Cleveland 

Bay in all years, particularly around the Port Townsville and to the east of the port (Fig 13). 

 Regarding the decomposition of the expected counts into its occupancy and 

conditional group-size components, there were some interesting contrasts between species. 

For humpbacks, the conditional group-size exhibited erratic spatial-variation across the 

offshore regions, especially in 2020, 2021 and 2022. Group-sizes in 2022 were high around 
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the Port of Townsville, and small between Port of Townsville and Magnetic, in the vicinity 

where dredging occurred. 

 For snubfins, the occupancy component was roughly in-line with the expected 

counts, and was clearly the dominant component, whereas the conditional group-size 

component was more uniform across space. Two exceptional areas of very high conditional 

group-size (particularly in 2022, but also somewhat in 2023) were: i) to the west of Magnetic 

Island on the nearshore boundary between Cleveland and Halifax Bay; and ii) between Port 

Townsville and Magnetic Island, in the vicinity of capital dredging and piling activities (both 

of which were present in 2022). For the latter region, it could be that the disturbances 

induced a behavioural response associated with grouping, such as fast-travelling and less 

foraging. 

 



 

82 
 

  
a) 2019      b) 2020      

 
c) 2021      d) 2022      

 
e) 2023 
 
Figure 12. Spatial partial plots of Australia snubfin dolphins from ensemble-modelling of species 
distribution across the survey area based on data collected in 2019, 2020, 2021, 2022 and 2023: 
(a-e) shows how the probability of dolphins’ presence/absence varies spatially over the study 
area, (f-j) shows how expected group size varies spatially (conditional on being present), and (k-
o) shows the relative density function of dolphins across the bays.  
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f) 2019      g) 2020      

 
h) 2021      i) 2022      

 
j) 2023 
 
Figure 12 (continued). Spatial partial plots of Australia snubfin dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022 and 2023: (a-e) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area, (f-j) shows how expected group size varies spatially (conditional on 
being present), and (k-o) shows the relative density function of dolphins across the bays.  
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k) 2019       l) 2020      

 
m) 2021      n) 2022      

 
o) 2023 
 
Figure 12 (continued). Spatial partial plots of Australia snubfin dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022 and 2023: (a-e) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area (f-j), shows how expected group size varies spatially (conditional on 
being present), and (k-o) shows the relative density function of dolphins across the bays.  
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a) 2019      b) 2020      

 
c) 2021      d) 2022      

 
e) 2023 
 
Figure 13. Spatial partial plots of Australia humpback dolphins from ensemble-modelling of 
species distribution across the survey area based on data collected in 2019, 2020, 2021, 2022 
and 2023: (a-e) shows how the probability of dolphins’ presence/absence varies spatially over the 
study area (f-j), shows how expected group size varies spatially (conditional on being present), 
and (k-o) shows the relative density function of dolphins across the bays.  
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f) 2019      g) 2020       

  
h) 2021      i) 2022       

 
j) 2023 
 
Figure 13 (continued). Spatial partial plots of Australia humpback dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022 and 2023: (a-e) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area (f-j), shows how expected group size varies spatially (conditional on 
being present), and (k-o) shows the relative density function of dolphins across the bays.  
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k) 2019      l) 2020       

 
m) 2021      n) 2022       

 
o) 2023 
 
Figure 13 (continued). Spatial partial plots of Australia humpback dolphins from ensemble-
modelling of species distribution across the survey area based on data collected in 2019, 2020, 
2021, 2022 and 2023: (a-e) shows how the probability of dolphins’ presence/absence varies 
spatially over the study area (f-j), shows how expected group size varies spatially (conditional on 
being present), and (k-o) shows the relative density function of dolphins across the bays.  
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For snubfins, Table 9a shows the average predicted values (for predicted occupancy 

and expected) across the spatial plots and stratified by bay (Cleveland Bay vs. Halifax Bay), 

inshore vs. offshore, and by year. Table 9b shows the same for humpback dolphins. The 

2023 values were very low in Cleveland Bay’s inshore water. For example, the expected 

occupancy was down to 0.01, a 3 to 6-fold reduction compared to prior years. Halifax Bay’s 

inshore water, however, attained their highest values across the study-years, in both 

occupancy and expected counts. 

For humpbacks, the 2023 year obtained values for occupancy and expected counts 

that were the median across years, for most strata, but down starkly compared to the bumper 

year of 2022. In other words, the values are neither high nor low compared to past years. 
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Table 9. Summaries of a)  snubfin dolphins and b) humpback dolphins predicted occupancy 

and expected counts, by strata.  

a) Snubfin dolphins 

 Expected Occupancy Expected Counts 
 Halifax Bay Cleveland Bay Halifax Bay Cleveland Bay 
Year inshore offshore inshore offshore inshore offshore inshore offshore 
2019 0.08 0.02 0.05 0.02 0.42 0.07 0.16 0.02 
2020 0.04 0.01 0.03 0.01 0.19 0.03 0.07 0.01 
2021 0.09 0.01 0.06 0.01 0.43 0.07 0.19 0.01 
2022 0.14 0.02 0.04 0.01 0.95 0.11 0.17 0.02 
2023 0.11 0.02 0.01 0.01 0.56 0.08 0.03 0.01 

 
b) Humpback dolphins  

 
 Expected Occupancy Expected Counts 
 Halifax Bay Cleveland Bay Halifax Bay Cleveland Bay 

Year inshore offshore inshore offshore inshore offshore inshore offshore 
2019 0.34 0.23 0.2 0.09 0.99 0.25 0.58 0.04 
2020 0.22 0.14 0.09 0.05 0.77 0.21 0.3 0.02 
2021 0.29 0.22 0.25 0.11 0.75 1.07 0.62 0.31 
2022 0.33 0.19 0.22 0.11 2.01 1.19 1.54 0.22 
2023 0.26 0.17 0.18 0.09 0.81 0.42 0.5 0.19 

 

3.3  Patterns of attendance to the port area 

 Land based survey effort 

During the 2023 field season, there were 19 days of land-based surveys, conducted 

between June 2nd and July 11th. There was a total of 1164 scans (compared to 870 scans in 

2019, 948 in 2020, 1533 in 2021, and 1490 scans in 2022; Table 10). No snubfin nor 

bottlenose dolphins were seen, as compared to just one observation of a snubfin dolphin in 

2022. Humpbacks were observed on 16 of the 19 survey-days. 
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Table 10. Survey effort and dolphins observed from Berth 11 at the Port of Townsville 

during June-July 2023. BSS= Beaufort Sea State at which observations were conducted.  

Date Number 
of scans 

Number of 
scans with 
humpback 
dolphins 
present 

Number of 
scans with 

snubfin 
dolphins 
present 

Number of 
scans with 
bottlenose 
dolphins 
present 

BSS 
min 

BSS 
Max 

BSS 
Mode 

2/06/2023 68 2 0 0 1 3 2 
3/06/2023 66 2 0 0 1 3 1 
4/06/2023 66 2 0 0 2 4 2 
13/06/2023 66 1 0 0 1 2 1 
14/06/2023 66 3 0 0 1 4 1 
15/06/2023 66 1 0 0 1 3 1 
16/06/2023 66 4 0 0 1 3 3 
19/06/2023 56 3 0 0 1 3 2 
20/06/2023 66 4 0 0 1 4 1 
26/06/2023 4 0 0 0 1 2 1 
27/06/2023 66 0 0 0 0 2 1 
28/06/2023 66 1 0 0 0 2 1 
29/06/2023 66 0 0 0 1 3 2 
30/06/2023 56 1 0 0 1 5 3 
5/07/2023 66 1 0 0 0 3 1 
6/07/2023 66 6 0 0 0 3 1 
8/07/2023 66 6 0 0 1 4 3 
10/07/2023 66 10 0 0 1 4 1 
11/07/2023 56 6 0 0 1 4 1 
Total 1164 53 0 0    
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 Overall difference in dolphin occurrence between years 

For snubfin dolphins, the Bayesian p-value for 2019 (baseline) vs 2023 was 0, 

indicating that encounters of snubfin dolphins in 2023 were lower than expected (recall that 

a small p suggests inconsistency between baseline and 2023). Bayesian p-values for 2020 

vs 2023, and 2021 vs 2023 were also approximately 0, indicating that encounters of snubfin 

dolphins were lower in 2023 than expected based on previous years. The 2023 vs. 2022 p-

value was moderate at 0.32, but there was only one snubfin observation in 2022, and 0 in 

2023, making the comparison sparse. 

 In contrast, for humpbacks dolphins, the Bayesian p-values for 2019 (baseline) 

vs 2023, 2020 vs 2023, and 2021 vs 2023 were all greater than 0.998 (Table 11), i.e., the 

number of encounters of humpback dolphins were in line (or greater) than the expectations 

of previous years. The 2023 vs. 2022 humpback p-value was 0.6, suggesting moderate 

alignment with the expectations of 2022. 
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Table 11. Comparison of dolphin occurrences between 2023 and all other years and 

corresponding Bayesian P-values. 

a) 2019-2023 

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2019 867 49 

0.00 
2023 1164 0 

Humpback  
2019 867 19 

1.00 
2023 1164 53 

 

b) 2020-2023 

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2020 948 34 

0.00 
2023 1164 0 

Humpback  
2020 948 7 

1.00 
2023 1164 53 

 

c) 2021-2023 

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2021 1533 27 

0.00 
2023 1164 0 

Humpback  
2021 1533 32 

1.00 
2023 1164 53 
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d) 2022-2023 

 

 Diel and behavioural patterns observed 

There were no observations of snubfins in 2023, from the land station, and so no 

behavioural analyses could be performed. 

In 2023, humpback dolphins were mainly observed foraging (48%; Table 12), 

followed by travelling (35%). These behaviours were especially dominant in the morning 

(Fig. 14b), both in terms of absolute number of encounters, as well as proportion of time, 

especially during 9:00 am to 11:00 am, and encounters fell-off sharply after 15:00. Other 

behaviours such as resting and socialising showed no discernible pattern.  

 The behavioural summaries were also made by pooling all survey years 

together, from 2019 to 2023 (Fig. 15). The pooled behavioural summaries of snubfins (from 

2019 to 2023) showed that they spent the overwhelming majority of their time foraging, with 

most encounters occurring evenly between 6:00 to 11:00, followed by a sharp drop-off in 

encounters thereafter (Fig 15a).The pooled summaries suggest that humpback dolphins had 

a morning-peak in foraging and travelling activities between 9:00-11:00, and more uniform 

activity in the hours of 6:00 to 9:00, and 11 through to 15:00, with a sharp decline after 15:00 

(Fig. 15b).  

Species Year Number of Scans 
N occurrences of 

dolphins 
Bayesian P-value 

Snubfin 
2022 1490 1 

0.32 
2023 1164 0 

Humpback  
2022 1490 65 

0.60 
2023 1164 53 
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Table 12. The total number of scans where either species was present (and behaviour could 

be determined) during land-station surveys from 2019 to 2023, and the proportion of times 

they were observed engaged in foraging, resting, socializing, and travelling behavior. The 

aggregated numbers for all survey years (“pooled”) are also shown below. 

Species Year 

Number of 
Scans with 

Species 
Present 

Foraging Resting Socialising Travelling 

Snubfin 

2019 47 0.62 0.02 0.04 0.32 

2020 29 0.97 0.03 0.00 0.00 

2021 24 0.54 0.00 0.25 0.21 

2022 1 0.00 0.00 0.00 1.00 

2023 0.00 0.00 0.00 0.00 0.00 

Pooled 101 0.69 0.02 0.08 0.21 

Humpback 

2019 18 0.50 0.00 0.00 0.50 

2020 7 0.71 0.00 0.29 0.00 

2021 29 0.52 0.00 0.31 0.17 

2022 59 0.44 0.02 0.15 0.39 

2023 52 0.48 0.04 0.08 0.40 

Pooled 165 0.49 0.02 0.15 0.35 

* Note: discrepancies in counts with other tables due to NA in behaviours 
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a) 

 
b) 

Figure 14. a) Australian snubfin and b) humpback dolphin observations by time of day (2-3 

hourly bins) in 2023. Bar height represents densities of counts (number of dolphin’s groups 

seen divided by number of scans); bar compositions represent proportion time observed in 

various behaviours.  
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a) 

 
b) 

Figure 15. Pooled observations (2019 to 2023 inclusive) of Australian a) snubfin and b) 

humpback dolphins by time of day (2-3 hourly bins). Bar height represents densities of 

counts (number of dolphin groups seen divided by number of scans); bar compositions 

represent proportion time observed in various behaviours.  
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 Dolphins’ patterns of occurrence in relation to boats, capital dredging, maintenance 
dredging and rock dumping  

Boats 

All boats were pooled for analysis given data available. There were no observations 

of snubfin dolphins from Berth 11 during 2023. The presence and behavioural activity of 

humpback dolphins observed from Berth 11 in 2023 changed as the number of boats 

increased (Fig 16b). Humpback dolphin counts tended to decrease with increasing number 

of boats, and generally dolphins were observed foraging more frequently when there were 

less boats present and socialising when there were more boats (Fig. 16b).  

 In the presence of boats overall years, snubfin dolphins had a more marked 

decline in counts, dropping approximately 37% from 0-1 boats being present to 2-15 boats 

present (Fig. 17a). There didn’t seem to be a consistent pattern in their behaviour in relation 

to the number of boats present, although at the lowest number of boats they spent the 

majority of their time foraging (65%), while at the highest number of boats (5-15), they were 

evenly split between foraging (33%), travelling (33%), and resting (33%).  

When considering all years of data pooled together, the counts and behaviour of 

humpback dolphins changed as the number of boats increase from 0-1 to 5-15 (Fig.17b). 

The counts of humpbacks decreased by 15% from 0-1 boats to 5-15 boats. The humpbacks 

spent the majority of their time foraging (52%) and travelling (33%) when there were 0-1 

boats; this gradually shifted to more time spent travelling (50%) and socialising (40%) in the 

presence of 5-15 boats, and very little time spent foraging (10%) (Fig.17b). 
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a) 

 

b) 

Figure 16. Counts of Australian a) snubfin and b) humpback dolphins groups observed and 

their behaviours, stratified by the number of boats present, for the 2023 survey-year. Bar 
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height represents densities of counts (number of dolphin groups seen divided by number of 

scans). 

 
 

a) 

 
b) 

Figure 17. Pooled observations (2019 to 2023 inclusive) of Australian a) snubfin and 

b) humpback dolphins by time of day (2-3 hourly bins). Bar height represents densities of 
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counts (number of dolphin groups seen divided by number of scans); bar compositions 

represent proportion time observed in various behaviours. 

 Dredging 

 Regarding the analysis of dolphin presence with respect to maintenance and 

capital dredging activities, we pooled all years and used the absence of dredging (of all 

types) as the null-model to calculate Bayesian p-values. For capital dredging, we further 

analysed the data based on whether the dredging was active (i.e. refers to a period when 

dredging operations were actively occurring-mechanical removal of sediments, rocks, or 

debris from the seabed) vs. inactive (periods when dredging operations are not occurring), 

as well as present (dredging vessel is at the site, regardless of whether it is actively 

operating) vs. not present (i.e. no dredging vessels are at the site) (Table 13). 

 Over 5 years of field study, there were a total of 21 scans in which maintenance 

dredging was present, 1327 scans in which capital dredging was present, and 858 scans in 

which capital dredging was present and active. 

 The humpbacks had very high Bayesian p-values for all types of dredging (p 

≥ 0.95) (Table 13). Therefore, their presence/absence patterns were in-line with the no-

dredging null model, and may indicate a positive affinity. 

 For snubfin dolphins, the p-values were high for maintenance dredging (0.99), 

but very low for capital dredging presence (0.000) and capital dredging activity (0.000), 

suggesting that capital dredging was associated with  low snubfin counts that were 

inconsistent  with the no-dredging null-model. Therefore, maintenance dredging did not 

appear to affect the presence/absence of snubfin dolphins around the port area, whereas 

capital dredging may influence their occurrence patterns.  
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Table 13. Land-based observations of Australian snubfin and humpback dolphins during a) 

maintenance dredging with trailing suction hopper dredger (THSD); b) presence of capital 

dredging with backhoe dredger (BHD) versus periods with no dredging (of all types); and c) 

active versus inactive/non-presence of capital dredging, across all survey years. 

a) 

Species 
Maintenance 

Dredging 
(TSHD) 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin no 4654 108 
0.99 

 yes 21 2 
Humpback no 4654 74 

0.95 
 yes 21 1 

b) 

Species 
Capital 

dredging 
(BHD) 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin no 4654 110 
0.00 

 yes 1327 1 
Humpback no 4654 75 

0.99 
 yes 1327 101 

c)  

Species 
Construction 

Dredging 
(BHD) 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin not 
present/inactive 5144 110 

0.00 
 active 858 1 

Humpback not 
present/inactive 5144 116 

0.99 
 active 858 60 

 

* For both types of dredging, the total number of scans does not match the sum of individual scans due to 

differences in treatments or sets. When analysing presence and absence counts for capital dredging, we 
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excluded both maintenance and capital dredging from the "no dredging" treatment. The same approach was 

applied to maintenance dredging. This ensured that the "no dredging" treatment was free from potential 

confounding effects caused by the presence of another type of dredging.  

Rock-Dumping 

 There were no additional incidences of rock dumping in 2023. All 401 scans in 

which rock dumping occurred happened in 2020. Therefore, our conclusions are the same 

as reported previously. 

 The Bayesian p-value was very high for snubfins (>0.999), suggesting that the 

presence of snubfins was not out-of-line with the expectations of the non-rock dumping null 

model, and there may even have been a positive affinity (Table 14). The p-value was very 

low for humpback dolphins, given that exactly 0 humpbacks were encountered during rock 

dumping (Table 14). Therefore, the presence or absence of snubfin dolphins around the port 

area does not seem to be influenced by rock dumping, however it does appear to have 

influenced humpback dolphin presence/absence. 

Piling Activities 

 There was no additional piling activity in 2023. All 9 scans in which piling 

occurred were from 2022, and so our conclusions are the same as reported previously. 

 There were no observed dolphins during any of the 9 piling scans. While this 

may seem dramatic, due to the few occurrences of piling, the lack of dolphins was actually 

in-line with the null-model expectations, such that the Bayesian p-values were high (0.763 

– 0.844) (Table 15).  
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Table 14. Land-based observations of snubfin and humpback dolphins during rock dumping 

and non-rock dumping construction activities across all survey-years. 

Species 
Rock-

Dumping 
Present 

Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
no 5601 91 

1.00 
yes 401 20 

Humpback 
no 5601 176 

0.00 
yes 401 0 

 

Table 15. Land-based observations of snubfin and humpback dolphins during piling and 

non-pilling activities across all survey years. 

Species Piling Active Number of 
Scans* 

Number of Scans with 
Dolphins Present Bayesian P-value 

Snubfin 
no 5993 111 0.84 

 yes 9 0 

Humpback 
no 5993 176 0.76 

 yes 9 0 

 

*The total number of scans does not match the sum of individual scans as there were a few scans where data 

was missing or dolphin species could not be determined 
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 GAM regression of dolphin presence/absence in relation to environmental predictors 
and anthropogenic disturbances (capital dredging, maintenance dredging, rock dumping, 
and piling) 

The multi-model GAM exercise for the land-station data inference resulted in 8451 

different models with different combinations of covariates. This was a 7.4x increase in the 

number of models examined previously, due to the combinatorial explosion in the number 

of models by adding the new segregated disturbance covariates, which had previously been 

rolled-up into a single indicator variable. 

 For humpback and snubfin dolphins, there was a lot of multi-model uncertainty, 

especially for snubfin dolphins. In other words, there were a lot of low probability models, 

including the top models. 

For snubfins, the top model, 2nd top model, and 3rd top model had 14.2%, 7.7%, and 

5.0% AIC-weights, respectively, indicating high multimodel uncertainty. The top model 

included covariates: glare, fishing boats, and various non-linear temporal components. The 

2nd best model just had glare and various temporal components. The 3rd best model had 

glare and small-boats plus various temporal components. 

 For humpbacks, the top model had 25.5% of the AIC-weights. It included 

covariates: year-as-a-categorical factor, BBS, glare, capital dredging presence, a non-linear 

time-of-day spline stratified by year, and a non-linear time-of-year spline stratified by year. 

The 2nd and 3rd best models had 11.8% and 11.5% AIC-weights, respectively. They also 

included capital dredging, BSS, as well as various temporal components, and the total 

number of boats. 

  



 

105 
 

 Due to the high model uncertainty, our primary means of inference was 

primarily based on model-averaging, such as interpreting the posterior inclusions 

probabilities (Table 16) to rank the importance of covariates, and the model-averaged 

coefficients and p-values (Table 17) to interpret effect magnitude and direction and statistical 

significance. 

For snubfin dolphins, all three temporal covariates had an inclusion probability of 

approximately 1. Glare had an inclusion probability of 0.98. Fishing boats had an inclusion 

probability of 0.25., followed by capital dredging/active 0.15 No other covariate had an 

inclusion probability above 0.1. 

For humpback dolphins, the highest posterior probabilities (greater than 0.99, or 99% 

inclusion) were obtained by five covariates including: all the temporal covariates (hour-of-

day, Julian day-of-year, year-as-a-categorical variable), the presence of capital dredging, 

and BSS. The next largest component was from glare, with an inclusion probability of 0.26, 

followed by total boats at 0.12. All subsequent covariates had inclusion probabilities below 

0.1. 
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Table 16. Model-averaged sum of AIC-weights (aka approximate posterior inclusion 

probabilities) for covariates predicting the presence/absence of dolphins at land-stations. 

Inclusion probabilities greater than 0.5 are shown in bold. 

Covariate Humpbacks Snubfins 
wind 0.01 0.05 
BSS 0.99 0.04 
swell 0.06 0.09 

visibility 0.02 0.08 
glare 0.26 0.98 
hour 0.99 1.00 

Julian-day-of-year 1.00 1.00 
year-as-a-categorical factor 1.00 1.00 

boats small 0.09 0.09 
boats medium 0.05 0.06 

boats large 0.10 0.06 
boats fishing 0.04 0.25 

boats recreational 0.08 0.05 
boats total 0.12 0.07 

boats industrial 0.05 0.06 
capital dredging presence 1.00 0.06 

capital dredging active 0.00 0.15 
maintenance dredging 0.00 0.04 

rock dumping 0.00 0.06 
piling 0.00 0.04 

aggregate disturbance 0.00 0.05 
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 Table 17 shows the estimate of standardised regression coefficients (1 unit 

change in logit-probability of presence per 1 standardised unit of the covariates), model-

averaged over top models with most posterior weights.  

 For snubfins, only glare had a statistically significant contribution (aside from 

the temporal covariates). Some of the estimates suffered from singularities and infinities in 

the MLE variance-covariance matrix (such as the capital dredging and piling covariates), 

likely due to the paucity of snubfins presence during capital dredging activities, making it 

impossible to estimate confidence intervals and p-values. Nonetheless, we can still look to 

the inclusion probabilities for inference about their “significance”. 

For humpbacks, there were two (non-temporal) covariates that had statistical 

significant model-averaged effects: BSS and the presence of capital dredging. The negative 

MLE for BSS suggests that BSS negatively associated with humpbacks. The positive MLE 

for capital dredging suggests that capital dredging was positively associated humpbacks. 
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Table 17. Model-averaged and standardised regression effects from an ensemble of GAMs for predicting dolphin presence at land observation 
stations. 

 Snubfin Humpbacks 

Covariate Mean S.E. Lower 
95%CI 

Upper 
95%CI P-value Mean S.E. Lower 95%CI Upper 95%CI P-value 

wind 0.00 0.03 0.00 0.00 0.98 0.00 0.02 0.00 0.00 0.95 

BSS 0.00 0.03 -0.06 0.00 0.90 -0.42 0.11 -0.62 -0.21 <0.01 

swell 0.01 0.04 -0.01 0.13 0.89 -0.01 0.04 -0.13 0.00 0.87 

visibility -0.01 0.03 -0.10 0.00 0.86 -249.94 Inf -Inf Inf 1.00 

glare 0.30 0.11 0.04 0.50 <0.01 0.04 0.08 0.00 0.27 0.61 

boats small 0.01 0.04 0.00 0.15 0.83 0.01 0.04 0.00 0.14 0.82 

boats medium 0.00 0.03 0.00 0.03 0.96 0.00 0.02 0.00 0.04 0.92 

boats large -0.01 0.04 -0.09 0.00 0.91 0.01 0.05 0.00 0.19 0.82 

boats fishing 0.04 0.08 0.00 0.27 0.62 0.00 0.02 0.00 0.00 0.96 

boats recreational 0.00 0.02 0.00 0.00 1.00 0.01 0.03 0.00 0.11 0.85 

boats total 0.00 0.03 0.00 0.10 0.91 0.01 0.05 0.00 0.20 0.78 

boats industrial 0.01 0.06 0.00 0.19 0.89 0.00 0.03 0.00 0.00 0.97 

capital dredging presence -882.00 Inf -Inf Inf 1.00 0.79 0.12 0.56 1.02 <0.01 

capital dredging active 3626.00 Inf -Inf Inf 0.99 0.00 0.00 0.00 0.00 1.00 

maintenance dredging 0.00 0.01 -0.01 0.00 0.94 0.00 0.00 0.00 0.00 1.00 

rock dumping 0.01 0.05 0.00 0.19 0.83 0.00 0.00 0.00 0.00 1.00 

piling 276.60 Inf -Inf Inf 1.00 0.00 0.00 0.00 0.00 1.00 

aggregate disturbance 0.01 0.05 0.00 0.17 0.86 0.00 0.00 0.00 0.00 1.00 
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Regarding interannual differences at the land-station, Table 18 shows the model-averaged 

estimated per-year effect (on the logit scale). These per-year-effects, however, do not 

include the positive and negative effects of covariates that may systematically vary by year 

(such as certain disturbances that only occurred in certain years). 

  In contrast to last year’s report, this year’s analyses revealed slightly more 

distinct and separable estimates per year, as evidence by 95%CI that were just barely 

overlapping between years.  

 The estimates and confidence intervals for snubfins (Table 18) had much more 

erratic estimates that varied a lot. The year with the largest point-wise estimate was 2019 (-

3.91), followed by 2021 (-4.40). The years with the lowest estimates were 2022 (-10.26) 

followed by 2020 (-14.85). 2023 suffered singularities due to the absence of individuals for 

that year, and which made point-wise estimation difficult. 

For humpbacks the 2019 estimate (-4.02) was almost separable from the 2022 

estimate (-5.992) and 2023 estimate (-5.68), suggesting systematic differences between 

such years. The point-wise estimate for 2021 was highest (-3.87), followed by 2019 (-4.02) 

and 2020 (-5.16), with 2022 (-5.992) and 2023 (-5.676) having the lowest point-wise 

estimates for humpbacks (Table 18). 
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Table18. Model-averaged time-series of per-year-effects on snubfin and humpback 

dolphin probability of occupancy (on the logit-scale) around the Port of Townsville. 

 Snubfin dolphins Humpback dolphins 

Year Mean SE Lower 
68%CI 

Upper 
68%CI 

Lower 
95%CI 

Upper 
95%CI Mean SE Lower 

68%CI 
Upper 
68%CI 

Lower 
95%CI 

Upper 
95%CI 

2019 -3.91 0.52 -4.42 -3.38 -4.96 -2.9 -4.02 0.26 -4.28 -3.76 -4.58 -3.53 

2020 -14.85 10.43 -25.3 -4.5 -35.39 4.84 -5.16 0.4 -5.56 -4.77 -5.98 -4.38 

2021 -4.4 0.25 -4.65 -4.16 -4.89 -3.91 -3.87 0.37 -4.24 -3.48 -4.62 -3.14 

2022 -10.26 4.43 -14.68 -5.86 -18.99 -1.57 -5.99 0.81 -6.8 -5.21 -7.65 -4.41 

2023 -Inf Inf NA NA NA NA -5.68 0.47 -6.15 -5.21 -6.6 -4.79 
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4. Discussion and conclusions 

4.1 Survey effort 

The 2023 vessel surveys of inshore dolphins for the Port of Townsville proceeded 

well. As planned, we were able to repeat six full surveys (plus an additional 7th) of Cleveland 

and Halifax Bay between June-July, and our survey effort over the last five years has been 

similar across both bays.  

4.2 Estimates of abundance, survival, emigration, and movement 

Snubfin dolphins 

Due to the limited number of encounters and thus individual captures of snubfin 

dolphins in Cleveland Bay in 2022 (n =1) and 2023 (n =10) adjustments to the Multistate 

Closed Robust Design model (as mentioned in results section) had to be made to allow 

estimation of population parameters. Therefore, the abundance estimated for snubfin 

dolphins for Cleveland Bay in 2022 and 2023, should be taken with caution, as they are likely 

overestimated (see results) due to the limited number of captures available in both years.  

Overall, the estimates of the abundance of snubfin dolphins in Cleveland Bay over 

the first three years of survey (2019-2021) indicated a relatively stable population of about 

30-40 snubfin dolphins; and a substantial decrease in the number of snubfin dolphins using 

the bay in 2022 and 2023. The substantial decrease in sightings of animals suggest that 

there has been either a decrease in their apparent survival (due to deaths or permanent 

emigration from the bay), an increase in their rate of movement from Cleveland to Halifax 

Bay, a decrease in their rate of movement from Halifax Bay to Cleveland Bay, or an increase 

in their temporary emigration from the Townsville area (absent from both Cleveland and 

Halifax Bays). Although data limitations in 2022 and 2023 posed difficulties for estimation of 

demographic parameters, our results indicate that an increase in permanent emigration (i.e. 
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10% have left each Bay, have not moved to the other, and are not expected to return), an 

increase in movement of snubfins out of Cleveland Bay into Halifax Bay, and a decrease in 

movement of animals from Halifax Bay to Cleveland bay likely account for the large reduction 

in the number of snubfin dolphins in Cleveland Bay in 2022 and 2023. As more data are 

collected next year, we should be able to assess if this decrease in abundance in Cleveland 

bay continues or dolphins return to the bay. 

The decrease in the abundance of snubfin dolphins in Cleveland Bay in 2022 and 

2023 could be the result of a variety of extrinsic (e.g., climate, competitive exclusion, or 

dispersal limitation) and intrinsic factors (e.g., spatial, and temporal variation in abundance 

of prey species, habitat specialization) which are not accounted for in this study. Moreover, 

temporal delays in marine mammals’ response to pressures are often expected, and 

changes in population abundance, distribution and behavior often lag several years behind 

habitat loss or degradation caused by environmental and anthropogenic disturbances 

(Heithaus et al. 2008, Hawkins et al. 2017). Although we cannot account for the influence of 

these factors, it is important to note that: 1) the estimates of the abundance of snubfin 

dolphins in Cleveland Bay across the first three years of monitoring (2019-2021) were 

relatively stable (30-40 snubfin dolphins used Cleveland Bay regularly), and that 2) the 

decrease in abundance in 2022 and 2023 coincided with capital dredging and piling activities 

associated with CU project; and followed the completion of the rock wall construction for the 

62 ha port reclamation area at the eastern end of the Port in 2021. 

Although our research does not prove what caused the decrease in snubfin dolphin 

abundance in Cleveland Bay in 2022-2023 in comparison to previous years, it suggests 

disturbance from port construction activities as a potential explanation. The decline in 

snubfin dolphin abundance in Cleveland Bay during 2022 and 2023 may result from various 

extrinsic (e.g., climate, competition, dispersal) and intrinsic factors (e.g., prey abundance, 
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habitat specialization) not accounted for in this study and for which there is no data availabe. 

However, the decrease in abundance in 2022 and 2023 and increased movement of 

snubfins from Cleveland to Halifax Bay coincided with capital dredging and piling activities 

associated with CU project; and followed the completion of the rock wall construction for the 

62-ha port reclamation area at the eastern end of the Port in 2021. Such activities have been 

associated with declines in dolphin abundance in other areas (Jefferson et al. 2009, Dungan 

et al. 2011). For example, significant declines in Australian humpback dolphins were 

observed in Port Curtis-Gladstone after extensive dredging and land reclamation (Cagnazzi 

et al. 2020). The number of humpback dolphins present in Darwin Harbour showed a steady 

decline during periods coinciding with pile driving associated with the Ichthys LNG Project 

(Brooks and Pollock 2015). Dredging caused common bottlenose dolphins (Tursiops 

truncatus), to spend less time in Aberdeen harbour (Scotland), despite high baseline levels 

of disturbance and the importance of the area as a foraging patch (Pirotta et al. 2013)  

In contrast to Cleveland Bay, the number of snubfin dolphins in Halifax Bay in 2022 

and in 2023 have increased greatly relative to previous years. Part of this increase can be 

attributed to increase in movements of snubfin dolphins from Cleveland Bay to Halifax Bay, 

the decrease in movement of animals from Halifax Bay to Cleveland Bay in the last two 

years, and immigration of new snubfin dolphins to Halifax Bay from outside the Townsville 

area. As suggested in section 1.1.1, the number of snubfin dolphins first identified in Halifax 

Bay in 2022 (Table 5) suggests that there may have been immigration into Halifax Bay 

between 2021 and 2022. Similarly, there were a substantial number of snubfin dolphins first 

identified in Halifax Bay in 2023 suggesting further immigration. However, the decline in the 

estimated total number between 2022 (117, Figure 8) and 2023 (76, Figure 8) suggests that 

many of the dolphins first identified in 2023 had arrived prior to 2022 but were not captured 

until 2023. If these new individuals were all true immigrants, the population estimate would 

have increased rather than decreased between 2022 and 2023 (Figure 8). Therefore, the 
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apparent surge of first captures in 2023 reflects both some immigration and a lag in 

detection. 

Such movements and immigration events provide evidence of connectivity between 

local populations of snubfin dolphins in Halifax Bay, Cleveland Bay, and adjacent areas 

outside the sampling study area. This indicates that snubfin dolphins in Halifax Bay are 

demographically and genetically connected to other coastal subpopulations around the 

coastal waters of the study area. Similar, immigration events, including the entry of 

apparently large numbers of new snubfin dolphins from outside the sample area have been 

detected in Bynoe Harbor, Northern Territory (Brooks et al. 2017). 

Various factors likely contributed to the decline of snubfin dolphins in Cleveland Bay 

and their redistribution to Halifax Bay in 2022–2023: 

• Changes in Prey Availability: Shifts in the distribution, abundance, or quality of prey 

species could drive dolphins to adjust their home ranges. A decline in prey 

availability in Cleveland Bay—whether due to seasonal cycles, environmental 

change, or construction activities associated with the CU project—may have 

prompted dolphins to move to Halifax Bay in search of better foraging opportunities. 

• Habitat Quality and Environmental Conditions: Changes in water quality (e.g., 

turbidity, salinity, pollutants), habitat structure (e.g., seagrass coverage, mangrove 

health), or oceanographic variables (e.g., temperature, freshwater runoff) can 

influence habitat suitability. Such changes—driven by natural variability, 

environmental change, or construction-related impacts—may have degraded 

conditions in Cleveland Bay while enhancing them in Halifax Bay, affecting prey 

dynamics and consequently dolphin distribution. 
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• Social Dynamics: Snubfin dolphins exhibit fission–fusion social structures and may 

adjust group composition or movement patterns in response to social cues. If key 

individuals or groups moved to Halifax Bay—whether due to natural cycles, habitat 

changes, or construction-related disturbance—others may have followed, 

particularly if those individuals were socially influential (e.g., females with calves or 

members of social alliances). 

• Disturbance Sensitivity and Risk Avoidance: Increasing levels of anthropogenic 

disturbance—such as vessel traffic, underwater noise, and recreational activities—

in Cleveland Bay, in addition to construction activity associated with the CU project, 

may have created a more energetically costly or risky environment, encouraging 

dolphins to shift to the relatively less disturbed Halifax Bay. 

These factors likely interact with one another and with anthropogenic pressures, 

collectively contributing to the decline of snubfin dolphins in Cleveland Bay and their 

redistribution to Halifax Bay. 

Humpback dolphins 

Overall, estimates of abundance, apparent survival, movements and temporary 

emigration across the last five years for humpback dolphins indicated that: 1) there has been 

an increase in their abundance in both Cleveland and Halifax Bays over last two years (2022-

2023); 2) their apparent survival has remained relatively high in both bays; 3) that humpback 

dolphins are more abundant in Halifax Bay than in Cleveland Bay, 4) that there is steady 

movement of humpback dolphins in both directions between Cleveland and Halifax Bays, 

and 5) that temporary emigration is higher in Halifax Bay than in Cleveland Bay. The larger 

abundance of humpback dolphins in Halifax Bay over the years indicates this bay holds a 

larger fraction of the population in the study area.  
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Our results showed opposing population trends in Cleveland Bay over the last two 

years (2022-2023) between humpback dolphins, which increased, and snubfin dolphins, 

which declined over this study period. Both trajectories were observed over a period 

characterized by dredging and piling construction activities associated with the CU project 

in Cleveland Bay. At this point, the abundance of snubfin dolphins started to decline 

significantly in Cleveland Bay, while humpback dolphins abundance increased. At the same 

time movements of snubfin between Cleveland Bay and Halifax Bay increased and so did 

their abundance in Halifax Bay.  

Natural environments are dynamic systems with conditions and environmental and 

anthropogenic disturbances varying across years. Higher trophic level consumers such as 

dolphins may respond to changes in their habitat (due to habitat loss and degradation); 

distribution and quality of their available prey, and interspecific competitor by moving to new 

areas to more suitable habitats to locate new resources and/or avoid competition.  

In order to persist, sympatric species with similar ecological niches may show 

contrasting responses to changes in environmental conditions. Sympatric species, sharing 

the same geographic range and often possessing similar ecological requirements, may 

exhibit contrasting population responses to disturbances due to a combination of ecological, 

behavioral, and evolutionary factors. Several key mechanisms may contribute to this 

variability including: 

• Resource Partitioning: Sympatric species may evolve to utilize resources in slightly 

different ways, allowing them to coexist in the same habitat. When disturbances alter 

resource availability, species with effective resource partitioning strategies may be better 

equipped to adapt and maintain stable populations. 
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• Adaptation and Evolution: Over time, sympatric species may evolve different adaptations 

in response to ecological challenges. If a disturbance affects a specific aspect of the 

environment, the species with relevant adaptations will have a selective advantage, 

leading to varying population dynamics. 

• Competitive Interactions: Even with similar ecological requirements, sympatric species 

may engage in competitive interactions for resources. Disturbances can alter the 

competitive landscape, favouring certain species over others. Some species may thrive 

under new conditions, while others may struggle. 

• Life History Strategies: Differences in life history strategies, such as reproductive rates, 

age at maturity, and parental care, can influence how species respond to disturbances. 

Species with flexible life history strategies may adapt more effectively to changing 

conditions. 

• Behavioral Responses: Species may exhibit different behaviours in response to 

disturbances. Some may have more flexible behaviours, allowing them to exploit new 

opportunities or avoid threats, while others may be more specialized and less adaptable. 

• Spatial Heterogeneity: Disturbances often lead to spatial heterogeneity in environmental 

conditions. Species with the ability to disperse, colonize new areas, or shift their 

distribution may fare better than those with limited mobility, contributing to divergent 

population responses. 

• Genetic Diversity: The genetic diversity within populations influences their ability to adapt 

to changing conditions. Species with higher genetic diversity may be more resilient and 

able to cope with disturbances, whereas those with limited genetic variability may face 

greater challenges. 

• Prior Adaptations: Species may have evolved specific adaptations to historical 

disturbance regimes. If a disturbance aligns with a species' historical adaptations, it may 

thrive, while species without such adaptations may experience population declines. 



 

118 
 

In summary, the contrasting population responses of sympatric species with similar 

ecological requirements to the same disturbances arise from a complex interplay of 

ecological, behavioral, and evolutionary factors. Understanding these dynamics is crucial for 

predicting and managing biodiversity in the face of environmental changes. 

4.3 Spatial distribution 

The spatial distribution patterns of humpback dolphins in Cleveland Bay and Halifax 

Bay have exhibited consistency during the past five years of monitoring. The spatial 

distribution of snubfin dolphins showed consistent use of similar areas with some significant 

changes over the last two years (2022-2023). The continuous use of similar core areas in 

Cleveland Bay and Halifax Bay by snubfin and humpback dolphins throughout the years 

highlights their strong site fidelity to these areas and importance of this region to their 

conservation, as has been indicated by previous research (Parra 2006, Parra et al. 2006a).  

Overall, both humpback and snubfin dolphins are mainly found along inshore areas 

of Cleveland Bay and Halifax Bay. Both species seem to favour approximately three core 

areas: i) to the west, around and to the east of the Port of Townsville in Cleveland Bay; and 

ii) the central coastal waters between Cape Pallarenda/Bohle River and Toolakea, and iii) 

the northern inshore areas off and west of Toomulla in Halifax Bay. Humpback dolphins also 

seem to inhabit some offshore areas in Halifax Bay, and occasionally occupy nearshore 

areas in the northeast of Magnetic Island.  

Humpback dolphins’ spatial occupancy and density in Cleveland Bay and Halifax Bay 

has remained relatively stable over the years, showing only a slight decline in 2020, 

particularly in the inshore area of Cleveland Bay. In contrast, snubfin dolphin spatial 

occupancy and density has shown a decrease in Cleveland Bay, and an increase in Halifax 

Bay over the last two years (2022-2023). These shifts in distribution and density are in line 
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with abundance and movement estimates from capture-recapture modelling, with snubfin 

dolphins showing an increase in abundance in Halifax Bay and movement rates from 

Cleveland Bay to Halifax Bay in 2022 and 2023.  

Regarding their spatial distribution in relation to known disturbances (boats, capital 

dredging, maintenance dredging, rock dumping), neither species seems to have a 

convincing statistic relationship to such covariates. Like previous years’ analyses, the high 

allocation of RVI to the unexplained spatial processes (i.e., spatial splines) for both species 

suggests that a lot of the spatial variation was not captured by known environmental or 

human related covariates, whether linear or not linear.  

The CV likelihood ratio tests however, provided substantial support for the full model 

including disturbance covariates for both species, but the cross-validation p-value suggests 

that a “no effect” null-model cannot be ruled out completely. Based on RVI values both 

capital and maintenance dredging appear to have a small influence on snubfin dolphins 

spatial distribution, and counts of large boats, fishing boats and maintenance dredging on 

humpback dolphins spatial distribution. Covariate interaction plots suggested that snubfin 

dolphin density increased with proximity to maintenance dredging but also increased with 

greater distance from capital dredging. For humpback dolphins, covariate interaction plots 

indicated that their density increased with a higher number of large boats, decreased with 

more fishing boats, and increased with greater distance from maintenance dredging.  

4.4 Patterns of attendance to the port area 

Land-based observations from Berth 11 within the Port of Townsville in 2023 were 

feasible throughout the day with good weather conditions. However, like 2022, 2023 was an 

unusual year compared to the three previous years. In 2023 there were no sightings of 

snubfin dolphins from Berth 11 observation station, while the number of scans with 
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observations of humpback dolphins, as in 2022, exceeded all previous years by at least a 

multiple of 2 (and often more) (Parra et al. 2019, 2020, 2021).  

The quantitative assessment of differences in snubfin dolphin occurrence between 

2023 and all previous pairs suggest that 2023 was similar to the 2022 field season (Table 

11), but quite different from 2019, 2020 and 2021. Thus, there is strong evidence that there 

has been a substantial decrease in the number of sightings of snubfin dolphins in Cleveland 

Bay from Berth 11 land station since 2022. The decline in sightings of snubfin dolphins is in 

line with the low number of sightings reported during vessel-based surveys, decline in 

abundance estimates and shifts in spatial distribution patterns. In contrast, the number of 

encounters of humpback dolphins were in line (or greater) than the expectations of previous 

years (able 11). The 2023 and pooled behavioural summaries (from 2019 to 2023) of dolphin 

observations from Berth 11 indicate that humpback dolphins feed regularly in the area, while 

snubfin dolphins did so up until 2021. 

Bayesian hypothesis testing of dolphin presence with respect to maintenance dredging, 

capital dredging, rock dumping and piling indicated some interspecific differences. Capital 

dredging appears to be related with the presence/absence patterns of snubfin dolphins 

around the Port, with snubfin dolphin sightings decreasing when capital dredging is present 

and/or active. For humpback dolphins, rock dumping shows a similar relationship. In 

contrast, the presence or absence of humpback dolphins around the port appears to have 

a positive affinity with both construction and maintenance dredging, and snubfin dolphins 

with rock dumping.  

The GAM model-averaging exercise, which estimates the marginal effect of various 

covariates while adjusting for the impact of other covariates, did not lend strong credence to 

the conclusion that either dolphin species was impacted by disturbances (maintenance 

dredging, capital dredging, rock dumping and piling). Model-averaged effects indicate that 
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two covariates had statistical significance: BSS and the presence of capital dredging, with 

BSS negatively associated and capital dredging positively associated with humpback 

dolphins presence. For snubfins, only glare had a statistically significant contribution (aside 

from the temporal covariates). Taken together, the GAM and Bayesian hypothesis testing 

results, suggest that while capital dredging and rock dumping activities may be associated 

with reduced snubfin and humpback dolphin sightings around the port, respectively, other 

co-occurring factors likely contribute, and further investigation is warranted to isolate the 

causal mechanisms. 

Here again, it is important to reiterate that these correlations do not imply causation 

as these patterns of attendance to port area may also be contingent on a variety of extrinsic 

(e.g., climate, competitive exclusion, or dispersal limitation) and intrinsic factors (e.g., diet, 

habitat specialization) that could influence a species' occurrence and that are not accounted 

for in this study. Despite this, the stark difference in the abundance and occurrence patterns 

of snubfin dolphins in Cleveland Bay and around the port in 2022 and 2023 in comparison 

to previous years, and in comparison, to humpback dolphins, raises concerns about the 

potential impact of extrinsic/intrinsic factors and CU construction activities on this species. 

It also highlights that the response to these pressures may differ between species and may 

depend on differences in behavioral plasticity and resilience (Brakes and Dall 2016). These 

changes may not necessarily reflect long-term population impacts but short-term effects; 

emphasising the need for monitoring programs to operate long enough (before, during and 

after construction activities) to ensure that species-specific population responses can be 

detected.  
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