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Disclaimer:  

The information in this report is for the exclusive use of Port of Townsville Limited, the only 

intended beneficiary of our work. Flinders University cannot be held liable for third party 

reliance on this document. This disclaimer brings the limitations of the investigations to the 

attention of the reader. The information herein could be different if the information upon 

which it is based is determined to be inaccurate or incomplete. The results of work carried 

out by others may have been used in the preparation of this report. These results have been 

used in good faith, and we are not responsible for their accuracy. The information herein is 

a professionally accurate account of the site conditions at the time of investigations; it is 

prepared in the context of inherent limitations associated with any investigation of this type. 

It has been formulated in the context of published guidelines, legislation in force at the date 

of this report, field observations, discussions with site personnel, and results of laboratory 

analyses. Any change to published guidelines or legislation may change the opinions of 

Flinders expressed in this document. Flinders opinions in this document are subject to 

modification if additional information is obtained through further investigation, observations 

or analysis. They relate solely and exclusively to environmental management matters and 

are based on the technical and practical experience of environmental practitioners. They are 

not presented as legal advice, nor do they represent decisions from the regulatory agencies 

charged with the administration of the relevant Acts. Any advice, opinions or 

recommendations contained in this document should be read and relied upon only in the 

context of the document as a whole and are considered current as of the date of this 

document. To the maximum extent permitted by law, Flinders disclaims all liability 

howsoever occurring, including any liability arising out of fault or negligence, for any loss 

arising in relation to the content of this document. 
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Executive Summary 

Background 

The Port of Townsville Limited (POTL) Inshore Dolphin Monitoring Program (IDMP) 

was introduced as part of their environmental approval under the Commonwealth 

Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) for the 

Townsville Port Channel Upgrade Project (CU Project). The aims of the IDMP are to 

establish baseline information and monitor and report on changes beyond natural spatial 

and temporal variation in the distribution, abundance, habitat use and behaviour of 

Australian snubfin dolphins (Orcaella heinsohni) and Australian humpback dolphins (Sousa 

sahulensis) in association with the CU Project construction activities. The IDMP will be 

implemented over pre-, during and post-CU Project construction activities. Pre-construction 

monitoring began in June 2019 following the approved study design and methods outlined 

in the IDMP scope of work developed for the CU-Project (Parra et al. 2019). In this report, 

we 1) summarise the results of the IDMP data collected during boat and land-based surveys 

in 2020, 2) compare these to previous results obtained during preconstruction monitoring in 

2019, and 3) report on any changes, beyond natural spatial and temporal variation, in 

coastal dolphin abundance and distribution since 2019. 

Methods 

As in 2019, the IDMP methodology integrated boat and land-based surveys. The 

boat-based surveys involved 12 people (four per research vessel), and the land-based 

surveys involved a team of two to three people per shift. We made efforts to employ a 

balanced team or skilled professionals for key roles, assisted by local university students for 

which we provided training and mentoring. As a result of COVID-19 travel restrictions, most 
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of our team were local graduate students, and the remainder were professionals from 

interstate.  

Sampling began on the 22nd of June and ended on the 28th of July 2020. Vessel 

surveys were conducted in Cleveland Bay and Halifax Bay during daylight hours (i.e. 

between 07:00 and 18:00) and in suitable weather conditions. We used three vessels 

simultaneously to cover inshore and offshore areas of both bays to collect data on inshore 

dolphin occurrence, undertake photo-identification, and record environmental parameters 

(i.e. water depth, sea surface temperature, turbidity, and salinity) associated with dolphin 

sightings and study area. Updated capture-recapture histories of distinctive individuals from 

photo-identification data and estimates of the marked proportion of individuals in the 

population for 2019 and 2020 were used to estimate abundance of snubfin and humpback 

dolphin in Cleveland Bay and Halifax Bay using capture-recapture population models. As in 

previous year access to Bowling Green Bay was not feasible, due to boat-ramp 

inaccessibility at Cape Fergusson due to floods and rain earlier in February-March 2019.  

Species distribution modelling methods were used to model the distribution of snubfin 

and humpback dolphin occurrence (presence/absence) and group size across the study 

area as a function of spatial-temporal covariates. The predicted probability of occurrence 

and group sizes were multiplied to give a prediction of relative density of snubfin and 

humpback dolphins in Cleveland Bay and Halifax Bay. We employed two complimentary 

quantitative methods (Structural Similarity Index and likelihood-ratio statistic) to investigate 

differences between the spatial distribution of dolphins in 2019 (preconstruction baseline) 

and 2020. 
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The land-based observation point we used during 2019 on Berth 11 (within the Port 

of Townsville) to conduct visual observations of dolphin presence/absence around the port 

area was not available this year due to shipping activities, and a three-week maintenance 

shutdown of the ship loader. Thus, this year we conducted visual land-based observations 

from an alternative site located close by (~400m away) at the entrance of Berth 11, to a 

radius ≤ 1 km around the observation point. Although the visual area covered this year 

overlapped partly with the area covered in 2019, the visible area was markedly reduced as 

observers were closer to sea level (the 2020 entranceway observation point is LAT +8.22m 

above water while the observation point on Berth 11 wharf used in 2019 is LAT+9.5m  above 

water)), and their range of view was restricted by the berth structure itself and the eastern 

and western side of the rock wall under construction as part of the perimeter of the 62ha 

Port Reclamation Area at the eastern end of the Port. 

As per last year, visual scans every 15 min were used to record presence or absence 

of dolphins, their group size, age composition, behaviour, the number and types of boats 

traversing the area, the presence or absence of maintenance dredging not associated with 

CU Project (i.e. routine dredging carried out every year to remove material that has drifted 

into the channel over time and limits the access of ships) and the rock wall construction 

activities associated with CU Project (i.e. rock dumping). Land-based survey data was 

analysed using descriptive statistics (e.g. total dolphin counts by species, and their 

behavioural composition) and further summarised by a range of covariates (i.e. hours of day, 

presence of boats, presence of maintenance dredging, and rock dumping). For statistical 

tests, we used Bayesian p-values to assess overall differences in dolphin occurrence 

between 2019 and 2020, and assess dolphins’ patterns of occurrence in relation to boats, 

dredging and rock dumping activities.  
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Results 

Vessel survey overview 

A total of 1849.6 km (1013.9 km in Cleveland Bay and 835.7 km in Halifax Bay) were 

surveyed on transect over 13 days between June 22nd and July 27th, 2020, completing six 

survey repeats of Cleveland Bay and Halifax Bay (Fig. 4, Table 2). 

We recorded a total of 86 dolphin groups (including both on and off effort sightings), 

consisting of 30 snubfin, 55 humpback and one bottlenose dolphin group. Snubfin and 

bottlenose dolphins were sighted less frequently than humpback dolphins, in both Cleveland 

and Halifax bays. Fifty-two individual snubfin dolphins and 56 individual humpback dolphins 

were photo-identified on and off effort during sampling in 2020. No bottlenose dolphins were 

photo-identified. Three snubfin and five humpback dolphins were photo-identified at both 

sites. 

Abundance 

Using closed population models, we estimated the total number of snubfin dolphins using 

Cleveland Bay at 143 (95% CI = 47-435) individuals and at 73 (95% CI =38-140) individuals 

for Halifax Bay (Table 9). The total population size of humpback dolphins was estimated at 

50 (95% CI = 31-81) individuals for Cleveland Bay and at 74 (95% CI = 51-107) individuals 

for Halifax Bay (Table 9). The number of snubfin dolphins captured in Cleveland Bay in 2020 

over the secondary samples were relatively few for capture-recapture modelling, resulting 

in low capture probabilities (Table 7) and thus the wide confidence interval around the 2020 

abundance estimate. There is considerable overlap in the confidence intervals of abundance 

estimates from 2019 and 2020, suggesting there has been no major changes in the 

abundance of either species.  
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Given the small numbers of bottlenose dolphins encountered we were not able to generate 

estimates of abundance for this species. 

Spatial distribution 

The species distribution models of both snubfin and humpback dolphins for Cleveland 

and Halifax Bays in 2020 showed a consistent and high probability of occurrence in waters 

close to the mainland coast (snubfin: ~2-3km , humpback: ~4-8km from mainland coast) and 

lower occupancy further offshore (Figs. 6-7). Areas of higher probability of both snubfin and 

humpback dolphin occurrence (>50%) in Cleveland Bay were mainly located between the 

Port of Townsville and Alligator and Crocodile Creeks to the east, and along the West 

Channel between Magnetic Island and Cape Pallarenda (Figs. 6-7). In Halifax Bay, both 

species were more likely to occur in the central (Bohle River to Toolakea) and northern 

inshore areas (off and west of Toomulla) (Figs. 6-7). Spatial models of relative density 

generally followed the same pattern as their occurrence, with areas of high occurrence also 

characterized by high density of dolphins. For humpback dolphins, distance to rivers, space 

(in general, unexplained), distance to land, and year (as an interaction) were the dominating 

covariates explaining their spatial distribution (Fig. 8). For snubfin dolphins, an unexplained 

spatial patterning variable was the dominating covariate (Fig. 8). 

Comparison of the spatial predictions of species distribution models maps, using the 

Structural Similarity (SSIM) index, indicated there were no major changes in the spatial 

distribution of snubfin and humpback dolphins in the study area between 2019 and 2020 

(Table 10) .The generalized likelihood-ratio test indicated marginal but important interannual 

differences in the spatial processes influencing dolphin’s spatial distribution related to year. 
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Patterns of attendance to the port area 

We conducted 948 visual scans over 18 days from the land-based observation point 

at the entrance to Berth 11. Snubfin dolphins were seen on 9 days and present in 34 scans, 

humpback dolphins were observed on 4 days and present in 7 scans, and bottlenose 

dolphins were not seen on any day. Snubfin and humpback dolphins were observed 

throughout different times of the day, engaged mainly in foraging behaviours (Fig. 9a). 

Snubfin dolphin sightings peaked in the morning between 9:00-11:00, while humpback 

dolphin sightings peaked between 11:00-13:00 (Fig. 9b). No dolphins were observed within 

the body of water being enclosed by the rock wall under construction. 

There were less observations of both species in comparison to 2019 and statistical 

analysis showed snubfin and humpback dolphin occurrence around the port was lower in 

2020 (Table 12). Snubfin dolphins seemed to become absent as the number of boats 

increased, while humpback dolphins appeared to shift their behavior from foraging at low-

boat presence, to travelling at high-boat presence (Figs. 11). Both species presence did not 

seem to be affected by maintenance dredging activities (Table 12). Snubfin dolphins’ 

patterns of occurrence around the port did not seem to be affected by rock-dumping 

activities associated with the rock wall construction. In contrast, the occurrence of humpback 

dolphins around the port decreased during rock dumping activities (Table 13). However, 

interpretation should be taken with caution as the number of humpback dolphins sighted 

during non-rock-dumping activities was low (n =7) . 

Discussion and conclusions 

Despite some logistical constraints due COVID 19, the 2020 monitoring of inshore dolphins 

proceeded well, and we were able to gather important data on the distribution and 
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abundance of snubfin and humpback dolphins in Cleveland and Halifax Bays for comparison 

with baseline data collected in 2019 under pre-construction conditions of CU Project.  

The abundance estimates for snubfin and humpback dolphins in Cleveland and 

Halifax Bays and their predominant inshore spatial distribution in 2020 were relatively similar 

to 2019, indicating no substantial changes in their population demographics and spatial 

habitat use. Snubfin dolphins in Cleveland Bay showed low capture probabilities (Table 7) 

which resulted in an estimate of abundance with a wide 95% confidence interval (143, 95% 

CI = 47-435). Despite the uncertainty associated with the abundance estimates of snubfin 

dolphins in Cleveland Bay, others were reliable and had good precision associated with 

them and showed overlap around confidence intervals with previous year. Thus, there is no 

indication of a substantial change or a decreasing trend in population size.  

Based on the land-based observations it appears the overall dolphin occurrence 

around the port area decreased in comparison to 2019. Patterns of snubfin dolphin 

occurrence around the port do not seem to be affected by maintenance dredging or rock-

dumping activities. Although humpback occurrence showed no difference with dredging their 

occurrence decreased with rock-dumping activities. The low number of dolphin observations 

in 2020 may be a result of dolphins using the waters around the port less frequently or simply 

a result of the lower vantage point used for observations during 2020. The latter seems more 

likely, given the sightings and the dolphins high probabilities of occurrence in areas around 

the port revealed by boat surveys and species distribution models. 

In summary, the estimates of abundance and spatial distribution obtained for 

Cleveland and Halifax bay during 2020 showed similar patterns to those obtained in 2019. 

Although both species continue to be sighted around the port of Townsville, there was a 

decrease in their frequency of occurrence in this area. We believe this is likely a result of 
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restricted visibility associated with the low vantage point used this year for land-based 

observations, rather than an impact from construction activities. We strongly recommended 

that the observation point for the remainder of the project stays fixed on the elevated point 

at Berth 11 to facilitate future comparisons.   
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1. Introduction 

The Townsville Port Channel Upgrade Project (CU Project) is a joint project of the 

Queensland and Australian Governments and Port of Townsville Limited (POTL). The CU 

project is the first stage of the long-term Port Expansion Project and will be delivered over a 

period of six years from 2018 to 2023. The expansion of the Port of Townsville is needed to 

accommodate forecast growth in trade at the port and address current capacity constraints. 

As part of the environmental approvals under the Commonwealth Environment Protection 

and Biodiversity Conservation Act 1999 (EPBC Act) for the CU project, POTL was required 

to develop and implement an Inshore Dolphin Monitoring Program (IDMP). 

The aims of the IDMP are to establish baseline information and monitor and report 

on changes, beyond natural spatial and temporal variation, in the distribution, abundance, 

habitat use and behaviour of the Australian snubfin dolphin (Orcaella heinsohni) and the 

Australian humpback dolphin (Sousa sahulensis) in association with the CU Project 

construction activities. Both species are listed as: Matter of National Environmental 

Significance (NES) under the EPBC Act; ‘Vulnerable’ by the International Union for 

Conservation of Nature (IUCN) (Parra et al. 2017a, Parra et al. 2017b); ‘Near Threatened’ 

in the Action Plan for Australian Mammals 2012 (Woinarski et al. 2014); and ‘Vulnerable’ in 

Queensland, under the Nature Conservation Act 1992. The IDMP will be implemented over 

pre-, during and post-CU Project construction activities. The findings from the IDMP will be 

used to inform management decisions for the project on an ongoing basis. 

The specific objectives of the Inshore Dolphin Monitoring Program are to: 

1. Objective One: Develop an Inshore Dolphin Monitoring Program consistent with the 

Coordinated National Research Framework to inform the Conservation and Management of 

Australia's Tropical Inshore Dolphins (Department of the Environment, 2015), or subsequent 
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document; and that provides consistent and scientifically valid monitoring methodologies to 

be able to determine trends and identification of stressors with the potential to cause adverse 

impacts for these species. This program is to cover pre-, during and post-construction 

timescales as separate identified study stages and reporting deliverables. 

2. Objective Two: Provide a baseline assessment on the distribution, abundance and 

habitat use of the Australian snubfin dolphin and the Australian humpback dolphin species 

in areas of Cleveland Bay that may be directly or indirectly impacted by the CU Project and 

adjacent non-impacted sites. 

3. Objective Three: Monitor and report on changes, beyond natural spatial and temporal 

variation, to the population and behaviour of the Australian snubfin dolphin and the 

Australian humpback dolphin throughout construction, pile driving operations and dredging 

activities for the CU Project, and a sufficient period of time post-construction to identify any 

changes in population and behaviour of the identified dolphin species as a result of the said 

activities. 

4. Objective Four: Provide recommendations on key areas of adverse impact and 

potential mitigation measures, including the identification of residual adverse impacts in 

Cleveland Bay which cannot be managed.  

5. Objective Five: Contribute to improving public awareness during the works on the 

inshore dolphin populations in Cleveland Bay. 

The IDMP of snubfin and humpback dolphins for the CU project commenced in July 

2019. The 2019 inshore dolphin surveys constituted the pre-construction phase as no 

construction activity occurred during this period. The 2020 inshore dolphin surveys 

corresponded with early construction activities of the rock wall that will form the perimeter of 



  

15 
 

the 62ha Port Reclamation Area as part of the Channel Upgrade project. Construction 

activities associated with these included the placement of four different types of rock 

material: primary armour, secondary armour, core rock and ballast rock to the North of the 

existing East Port, at the mouth of Ross River. in line with the scope of work, the objective 

of this report is to provide a summary of the fieldwork conducted and the results of the 2020 

inshore dolphin monitoring program, and report on any changes, beyond natural spatial and 

temporal variation, in coastal dolphin abundance and distribution since 2019.  

Opportunistic sightings of other marine mammals (i.e. bottlenose dolphins, dugongs 

and humpback whales) were recorded during surveys and are presented in this report as 

point distribution maps. 

2. Methods 

2.1 Data collection 

 Scientific permits and animal ethics 

The 2020 inshore dolphin monitoring program was conducted under Scientific Permit 

G19/42001.1 issued by the Great Barrier Reef Marine Parks Authority, permit SPP19-

001808 from the Queensland Department of Environment and Science, and Animal ethics 

approval E477/18 from the Animal Ethics Committee of Flinders University.  

 Training 

All IDMP personnel received boat and land safety induction and were trained in 

survey techniques and protocols on 17 and 18 June 2020, which involved testing all boat 

and land-based equipment and data collection procedures. 
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 Vessel-based survey methods 

As described in detail in the IDMP developed for the CU-Project, the boat-based 

methods have been built on a Robust Design sampling structure (Pollock et al. 1990, Kendall 

2013) of one primary sample per year (June-July), consisting of six secondary samples (i.e. 

a complete survey) at Cleveland Bay and Halifax Bay (Fig. 1). Access to Bowling Green Bay 

was not feasible due to the February-March 2019 storm damage to Australian Institute of 

Marine Science’s (AIMS) boat ramp at Cape Ferguson. The closest other available boat 

ramps required considerable travel time by road (over an hour) and rivers (over 30mins) and 

were highly tide dependant, thus making it impractical and unsafe to conduct vessel-based 

surveys in this bay under the planned allotted time.  

 
 

Figure 1. Map of Cleveland and Halifax Bays study areas including inshore and offshore 

transect, Ross Creek transect, and environmental stations.  
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Sampling methods followed standard procedures applied in capture-recapture 

studies of inshore dolphin studies (Parra et al. 2006b, Cagnazzi et al. 2011). We used 

automated survey design algorithms (Strindberg and Buckland 2004) implemented in the 

software program Distance (Thomas et al. 2009) to design a systematic random line transect 

survey with regular line spacing (1.6 km apart and at 45º to the shore) covering both inshore 

and offshore areas within each of the survey sites (Fig. 1). Systematic line spacing results 

in even spatial distribution of sampling effort, uniform coverage probability and better 

information on dolphin’s spatial distribution and environmental variables than random 

designs (Du Fresne et al. 2006, Thomas et al. 2007). Survey priority was given to inshore 

areas over offshore areas depending on weather conditions, as both snubfin and humpback 

dolphins occur mainly in inshore areas in the region. 

We used the same three rigid hull inflatable boats (RHIBs) (i.e. RV Coda, Koopa and 

Manta, Fig. 2) as in 2019 to simultaneously survey different areas of each bay during June-

July 2020 and complete a full survey of each bay within one day. All surveys were conducted 

in mostly good sighting conditions (Beaufort Sea State ≤ 3 and no rain) between 07:00 and 

18:00, depending on suitable conditions. A crew of three observers and a skipper 

systematically searched for dolphins forward of each vessel’s beam with the naked eye. 

Once an individual or group of dolphins was sighted, on-transect effort was suspended and 

the dolphins were approached slowly (<5 knots) to within 5-10m to carry out photo-

identification and record GPS location, species identification, group size (minimum, best and 

maximum estimates), group age composition (calf, juvenile, adult as defined by Parra et al. 

2006a), and predominant group behaviour (Mann 1999a). Groups were defined as dolphins 

with relatively close spatial cohesion (i.e. each member within 100 m of any other member) 

involved in similar (often the same) behavioural activities. Photographs of individual animals 

were taken using Nikon D750 digital SLR cameras fitted with 50-500 telephoto zoom lenses. 
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After all, or most individuals in the group were photographed or dolphins were lost, transect 

effort resumed at the location on the transect line where the dolphins were first sighted. Data 

on environmental variables (water depth, sea surface temperature, turbidity, and salinity) 

were collected in situ using a U-52 Horiba multi-parameter water quality meter at the location 

where each group of dolphins was first encountered, at set points along the transect line, 

and at the beginning and end of each transect leg (i.e. environmental stations, Fig. 1). All 

data on survey conditions, survey effort and marine mammal sightings were recorded in 

handheld tablets using CyberTracker software (http://www. cybertracker.org/). 

 

Figure 2. Rigid hull inflatable boats a) RV Manta, b) RV Koopa and c) RV Coda used for 

boat-based surveys of inshore dolphins in the Townsville region during June and July 2020. 
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Research team conducting surveys of inshore dolphins in Cleveland Bay onboard vessel 

Manta (d). 

 Land-based survey methods 

This field season, land-based observations of dolphin presence/absence around the 

port were carried out at the entrance to Berth 11 within the Port of Townsville, whereas in 

2019 they were conducted at the end of the berth from an elevated vantage point on berth 

11 (LAT + 9. 5m abovewater) (Fig. 3). The 2019 land-based observation point on Berth 11 

was not accessible this year due to shipping activities, and a three-week maintenance 

shutdown of the ship loader. Thus, this year we conducted visual land-based observations 

from an alternative site located about 400m south of 2019 observation point at the entrance 

of Berth 11, to a radius ≤ 1 km around the observation point. Although the visual area 

covered this year overlapped partly with the area covered in 2019, the visible area was 

markedly reduced as observers were closer to sea level (LAT + 8.22m above water) and 

their range of view was impeded by the Berth 11 structure itself, and the eastern and western 

side of the rock wall that was under construction as part of the perimeter of the 62ha Port 

Reclamation Area at the eastern end of the Port. This area also coincides with the CU project 

area for land reclamation and widening of the channel at the harbour entrance (Fig. 3). The 

coastal waters adjacent to the Port of Townsville have previously been identified as a dolphin 

high use area (Parra 2006). Conducted over time, this method will enable us to determine 

the dolphins’ occurrence (presence/absence) in this area and assess their response to CU 

project construction activities that occur within this area (Pirotta et al. 2013).  

Visual scan sampling every 15 min was used to record the occurrence 

(presence/absence) of dolphins (Altmann 1974, Mann 1999b), and covered a radius of 

approximately 1km around the observation point at the entrance of Berth 11. Observations 

were conducted by a team of two trained observers doing one or two three-hour shifts per 
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day between 07:00 and 17:00. Visual observations were mostly undertaken during good 

weather conditions (i.e. Beaufort sea state ≤ 3 and no rain). Each observer scanned to the 

left or the right-hand side of the observation point with the aid of 7 x 50 binoculars and the 

naked eye. During each visual scan we recorded, within a radius of approximately 1km 

around the observation point, the presence or absence of dolphins, their group size, age 

composition, behaviour, the number and types of boats traversing the area, and the 

presence or absence of CU construction activities including dredging and rock dumping.  

Figure 3. a) Location of Berth 11 within the Port of Townsville and b) land observation points 

on Berth 11 in 2019 and at entrance to Berth 11 in 2020.  

2.2 Data analysis: Population demographics 

 Photo-identification  

Capture-recapture histories of distinctive individuals were used to estimate 

abundance of Australian snubfin and humpback dolphins in 2019 and 2020 using capture-

recapture population models (Williams et al. 2002, Amstrup et al. 2005). An individual was 

considered ‘captured’ when it was first photo‐identified, and ‘recaptured’ when photo‐

identified thereafter. Individual snubfin and humpback dolphins were identified based on the 

unique natural marks on their dorsal fins (Parra and Corkeron 2001, Parra et al. 2006a). All 

photographs taken during boat surveys were examined and subjected to a strict quality and 

distinctiveness grading protocol before matching and cataloguing to minimise 
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misidentification (Hunt et al. 2017). Only high-quality photographs of distinctive individuals 

were used in analyses. We used DISCOVERY (version 1.2.) software to process, match, 

catalogue and manage all the photo‐identification data (Gailey and Karczmarski 2012). 

Both “on effort” and “off effort” sightings were combined and included in capture- recapture 

(CR) analyses. Capture history data were analysed using CAPTURE within the program 

MARK (White and Burnham 1999). 

 Capture-recapture models 

Capture-recapture methods (Williams et al. 2002, Amstrup et al. 2005) can be used 

to estimate population sizes and rates of apparent survival (alive and in the area), temporary 

emigration and movement between sites. The Multistate Closed Robust Design model 

(MSCRD, Brownie et al. 1993, Nichols and Coffman 1999, Kendall and Nichols 2002, 

Kendall 2013) will be fitted to estimate these parameters. As indicated in 2019 report, the 

MSCRD will require, however, data from a minimum of three yearly samples. Until there are 

sufficient data to build an MSCRD model, closed population models will be fitted to the data 

from each year to estimate abundance of each species in Cleveland Bay and Halifax Bay. 

The estimates provided by these models will be updated with the MSCRD when data from 

the first three years become available.  

 Goodness of fit of closed population models 

Program CAPTURE (Otis et al. 1978) estimates a suite of eight alternative closed 

population models and also performs goodness of fit (GOF) tests. The models vary 

according to whether capture probabilities vary by time, differ between first and subsequent 

captures (indicating a behavioural response to first capture) or vary among individuals 

(individual heterogeneity). The GOF tests are designed to detect time (t), behaviour (b) and 
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heterogeneity (h) effects and combinations of them. Given a set of data, CAPTURE can be 

tasked to select the appropriate model given the results of the GOF tests. 

 Model selection – AIC 

In general, the modelling process involves fitting a set of models with alternative 

parameter structures and comparing them for fit to data and parsimony. Models were 

compared with the Akaike Information Criterion corrected for small sample sizes (AICc, 

Burnham and Anderson 2002), with smaller values of AICc indicating better fitting models, 

and with AICc weights, which measure the relative likelihoods of the models in the set. When 

one model in the set had a clearly lower AICc than all others and attracted the major 

proportion of the AICc weight, the parameter estimates from this ‘best’ model are reported; 

when several models have similar AICc values and shared the AICc weight, model-

averaging may be applied (Buckland et al. 1997) whereby a weighted average of the 

parameter estimates from several models are reported. 

 Estimating the total population size 

Not all individuals have sufficiently distinctive marks to support unambiguous 

identification. Only distinctively marked individuals may be considered to be captured in 

photographs and capture-recapture models can only yield estimates of the number of 

distinctively marked members in a population. This estimate may be adjusted to yield an 

estimate of total population size by dividing by an estimate of the proportion of distinctively 

marked individuals in the population as described below. 

For each species, the number of individuals depicted by good quality photographs (

tP ) and, of those, the number that depicted a distinctively marked individual ( mP ) was 

recorded for each group encounter. A mixed effects binary logistic model was fitted to the 

distinctiveness data on individuals with good quality photographs (1 = distinctively marked, 

0 = not distinctively marked) with group and individual within group as random factors to 
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estimate the marked proportion ( pM ) of the population. Between-group variation may arise 

with natural variation in the proportion of distinctive to non-distinctive individuals. The model 

separates this variance from the variance associated with the estimated population 

proportion (Brooks et al. 2017). 

The total abundance ( totalN ) of each population for any sampling period may be 

estimated by dividing the estimated abundance of marked dolphins ( ˆ
markedN ) by the 

estimated marked proportion ( ˆ
pM ): 

( ) ( )2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  with SE( ) ( ) ( )total marked p total total marked marked p pN N M N N Var N N Var M M= = +  

Log-normal confidence intervals for abundance estimates may be calculated 

following Burnham et al. (1987): 

( )2

2
ˆˆ ˆ ˆ ˆ ˆ ˆ and ,  where exp log 1 ( )lower upper eN N C N N C C z SE N Nα

  = = ⋅ = +    
 

2.3 Data analysis: Spatial distribution 

 Modelling framework 

Our goal was to model dolphin’s spatial distribution in the study area before (2019) 

and after (2020) CU project construction activities began to assess if there were any 

differences in the spatial distribution patterns of snubfin and humpback dolphins between 

years. At a mature stage of the project, with more data, the goal of the analysis will be 

inference about the spatial distribution of dolphins, especially in relation to human 

disturbances. Currently, there were only 8 observations of rock dumping activities during the 

boat-based data-collection, therefore we do not address this modelling objective in this 

report. Instead, the goals of the 2020 modelling exercise were to: 

1. Estimate covariates’ importance (i.e., relative variable importance). 
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2. Assess models’ predictive performance (e.g., ROC-AUC and PR-AUC 

scores).  

3. Examine differences in species’ spatial distribution between survey year 2019 

and 2020. 

As was detailed in the previous report, the modelling framework used for species 

distribution modelling was the high-performance “boosting” technique (Bühlmann and Yu 

2003, Schmid and Hothorn 2008), specifically emulating the works of Kneib et al. (2009) and 

Hothorn et al. (2010). The method is an ensemble method that automatically performs model 

selection among different sub-models, such as spatial splines, temporal splines, spatial 

autocorrelation, and linear effects, etc. The method also addresses many common data-

challenges, including small samples size and high-dimensionality (“small-n high-p 

problem”), and high multicollinearity among spatial covariates (Oppel et al. 2009, Schmid et 

al. 2010, Bühlmann et al. 2013, Mayr et al. 2014). It is also related to other high-performance 

methods (Meir and Rätsch 2003, Chen and Guestrin 2016) and can decompose variation 

into spatial, temporal, and observational covariates, as motivated by Hothorn et al. (2010). 

Species distribution models for 2019 and 2020 incorporated 11 sub-components, 

representing different groupings of covariates and wrapped in different sub-models (Table 

1). According to the boosting methodology, only important sub-models are selected, and the 

unimportant sub-models are either shrunk to have only a small contribution to the models’ 

predictions, or they are ignored altogether. The various components were: 

1: Main-effect penalized least squares, one for each covariate representing weather 

conditions, ecological variables, and boats. 
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2: Interaction penalized least squares, one for each covariate representing ecological 

variables and boats, including an interaction with “year” (i.e., different slops and 

intercepts for 2019 and 2020). 

3: Decision-tree (1), including covariates for weather conditions. 

4: Decision-tree (2), including covariates for ecological variables and boats. 

5: Decision-tree (3), including covariates for ecological variables and boats, plus 

“year” as a (potential) interacting covariate. 

6: Main-effect univariate splines for time-of-day and time-of-year. 

7: Interaction univariate splines for time-of-day and time-of-year, including “year” as 

an interaction term (i.e., different marginal effects for each year). 

8: Main-effects bivariate splines for large-scale spatial trends. 

9: Interaction bivariate splines for large-scale spatial trends; including “year” as an 

interaction term (i.e., different marginal spatial trends per year). 

10: Spatial-autocorrelation effects (Matern radial basis function). 

11: Spatial-autocorrelation effects with an interaction with “year” (i.e., a different 

spatial field per year). 



Table 1. Covariates considered for the species distribution modelling of Australian Snubfin and humpback dolphins in Cleveland and 

Halifax Bays in 2019 and 2020, with columns indicating the: i) type of sub-model used for each covariate group within the larger 

ensemble-of-models, ii) the data-source for training the ensemble and iii) data source at prediction locations (how the covariate was 

extrapolated outside the points of data-collection). 

Sub-models Model type Covariate Covariate description Source at training Source at prediction 

1,2, & 3 

Main Effect 
PLS, 

Interaction 
PLS, and 

Decision trees 

BSS Beaufort Sea-State (BSS), 5-point ordinal scale In-situ estimate Constant, average 
conditions 

Swell Estimated swell height In-situ estimate Constant, average 
conditions 

Visibility Visible distance, 3-point ordinal scale In-situ estimate Constant, average 
conditions 

Glare Glare intensity, 4-point ordinal scale, summed two 
sides In-situ estimate Constant, average 

conditions 

1,2,4 & 5 

Main Effect 
PLS, 

Interaction 
PLS, and 

Decision trees 

SST Sea surface temperature (SST) from 
multiparameter water sensor In-situ measurement Interpolated spatial 

surface 

Salinity Conductivity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

Turbidity Turbidity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

River Distance Log-distance to coastal waterways/estuaries GIS, derived 

(Dyall et al. 2004) Same as training 

Reef Distance Log-distance to reefs GIS, derived 

(Beaman 2012) Same as training 

Seagrass 
Distance Log-distance to seagrass meadows 

GIS, derived 

(McKenzie et al. 2014) Same as training 

Foreshore 
Distance Log-distance to foreshore ecotypes GIS, derived 

(Beaman 2012) Same as training 
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Sub-models Model type Covariate Covariate description Source at training Source at prediction 

Land Distance Log-distance to land GIS, derived 
(Beaman 2012) Same as training 

Bathymetry Average depth GIS, bathymetric DEM 
(Whiteway 2009, Beaman 2010) Same as training 

Boats Total Counts of all boats in vicinity In-situ counts Interpolated spatial 
surface 

Boats Small Counts of all boats in vicinity, small size In-situ counts Interpolated spatial 
surface 

Boats Medium Counts of all boats, medium size In-situ counts Interpolated spatial 
surface 

Boats Large Counts of all boats, large and industrial and 
ferries In-situ counts Interpolated spatial 

surface 

Boats Fishing Counts of all fishing boats and trawlers In-situ counts Interpolated spatial 
surface 

Boats 
Recreational Counts of all recreational and sailing boats In-situ counts Interpolated spatial 

surface 

Boats Industrial Counts of all barges, trawlers, tugs and other 
industrial In-situ counts Interpolated spatial 

surface 

6, 7 

Main-effect 
splines, and 
Interaction 

splines 

Time-of-day Metric time at observations In-situ measurement Constant, average 
conditions 

Day-of-Year Julian-day In-situ measurement Constant, average 
conditions 

8,9 

Main-effect 
bivariate 
splines, 

Interaction 
bivariate 
splines 

Space X & Y UTMs used in spatial spline GIS Same as training 

10,11 Radial basis 
functions Space X & Y UTMs used in spatial covariance function GIS Same as training 
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 Main Effects and Interactions 

Some of the covariates are represented in more than one sub-model, especially 

regarding “main effects” versus “interaction” effect with year. During the automatic model-

selection and regularization, the model selects the best combination of main-effects and 

interaction effect. For example, the penalized least-squares sub-models can represent a 

univariate main-effect with no interactions; or they can have an interaction with “year”, such 

that the slope and intercepts vary per year. Those sub-models that include “year” as an 

interacting categorical variable have more penalization than the “main effects” learners. This 

means that the automatic mode-selection should only select the higher-order interactions if 

the extra complexity is warranted and there is some important difference between years 

2019 vs 2020, in terms of dolphin spatial distribution.  

In other words, the boosting automatic model-selection mechanism is implicitly 

testing whether “year” is an important covariate in explaining dolphins’ spatial distribution. If 

there was no important difference between dolphins’ spatial distribution between 2019 vs 

2020, then the model-selection should favour the more parsimonious “main effect” sub-

models that lack year as an interacting covariate. This will be important in latter tests on 

differences between 2019 and 2020.  

 Model Parsimony, Hyperparameters and Regularization 

The automatic model-selection and shrinkage mechanism improves model predictive 

performance by only giving high weight to the most important sub-models and shrinking the 

weights of unimportant sub-models so that they have a small overall effect. This is also 

known as l1-regularization (which is equivalent to the Lasso). Therefore, the final model is 

much more parsimonious and has a much lower complexity than the full theoretical model 

which includes all sub-models. 
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The degree of shrinkage/regularization was controlled by several hyperparameters. 

These are explained in the following list. The values for each of these hyperparameters was 

tuned via 10-fold cross-validation, such that the model with the best predictive performance, 

according to the 10-fold cross-validation log-likelihood, was selected as the final model used 

for inference. 

The list of pertinent hyperparameters were: 

• the number of boosting iterations m (aka the “early stopping” parameter). The more 

iterations meant more complex models, and fewer boosting iterations meant more 

shrinkage and fewer selected sub-models.  

• the learning-rate (aka “shrinkage” rate) which down-weights the contribution of any 

individual submodel. This was fixed to a single value per species (0.01-0.03), after 

manually experimenting with different values to get final models that had between 

1000-3000 boosting iterations. A lower shrinkage rate meant that the model required 

more boosting iterations and has a smoother surface; a higher shrinkage rate meant 

the model required fewer boosting iterations and produced a less-smooth surface. A 

smaller rate is generally preferable but comes at high computational cost (time and 

electricity).  

• Max-depth of decision-trees, which could take on values of [2, 3, or 4]. This 

hyperparameter was only relevant for the decision-tree sub-models (No.: 3, 4 and 5). 

The maximum tree depth (maxdepth) controlled the degree of interaction among 

covariates and the number of partitions of the covariate space. A small maxdepth 

meant that only two-way interactions were allowed, and there were only three splits 

of the covariate space (per boosting iteration). A higher maxdepth allowed higher-

order interactions and allowed many more splits of the covariate space. 
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• Minimum test-statistic threshold (i.e., mincriterion, in the mboost R-library) which 

could take on values [0.4, 0.5, or 0.65]. This hyperparameter was only relevant to the 

decision-tree sub-models (No: 3, 4 and 5). It controlled the hurdle rate for testing 

whether a split in the covariate space was significant enough to continue growing a 

decision tree. Lower values allowed the trees to grow longer (more interactions and 

more splits); higher values prevented the tree from growing too long and prevented 

unimportant splits from entering the model. 

• Degrees-of-freedom of the main-effects spatial splines, which could take on values 

[8,10,12, or 14]. This hyperparameter was only relevant to the main-effect spatial 

spline (sub-model No.8). A higher degree-of-freedom allowed a more flexible spatial 

surface, while lower values resulted in less spatial complexity. 

• Degrees-of-freedom of the spatial splines with year-interactions. These values were 

related to the degrees-of-freedom of the main-effects spatial splines, by being fixed 

to according to a formula: 2-times minus 2 of the degrees-of-freedom of the main-

effects spatial splines. The motivation for this formulation the following: the interaction 

models must have less than 2x the degrees of freedom of the main-effects models, 

otherwise the model-selection mechanism would always select the sub-model with 

the higher degree-of-freedom and lead to overfitting. 

• Degrees-of-freedom of the main-effects of the spatial-autocorrelation radial basis 

function (for sub-model No.10) which could take on values [9, 12, 14, or 16]. Higher 

values allowed more “wiggly” auto-correlation effects, and lower values enforced 

smoother auto-correlation effects. 

• Degrees-of-freedom of the spatial-autocorrelation radial basis function with year-

interactions (sub-model No.11). These values were fixed to 2-times minus 2 of the 

degrees-of-freedom main-effects spatial-autocorrelation radial basis function (for 
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sub-model No.10). Like the spatial splines, this interaction sub-model needed to have 

less than 2x the degrees-of-freedom of its main-effects sister-model. 

Other parameters, like the degrees-of-freedom of the penalized least-squares models 

(sub-models No. 1 and 2) and the degrees-of-freedom of the temporal splines (sub-model 

No.5) had their values fixed to 1 and 4, respectively, for all models (i.e.,. the recommended 

default values of the mboost library). 

 Modelling differences between 2019 and 2020 

The modelling method is an ensemble approach that combines sub-models 

according their contribution to the risk-reduction via shrinkage and regularization (i.e., 

weighting by their ability to explain variation). A nice feature of this automatic model-

averaging is that we can embed different sub-models-as-hypotheses: are dolphins' spatial-

temporal distribution the same each year? Or do they change one year to the next? These 

two conjectures can be specified as sub-models. 

This is implicitly the point of the detailed description of the different sub-models, 

especially regarding those that are the same but differ according whether there is a by-year 

interaction covariate. Consider sub-models (1) versus sub-models (2). The former posit a 

linear "main effect" response between dolphin occupancy/counts and covariates, whereby 

this linear response is consistent across years (e.g., dolphins are inversely related to 

distance-to-reefs, regardless of year), whereas the latter allows the functional relationship 

to differ each year (e.g., dolphins are inversely related to distance-to-reefs in 2019, and have 

no relationship in 2020). Likewise, sub-models (6) and (7) specify either a global main-effect 

or by-year segregated effect regarding the functional relationship between dolphins and 

time-of-day, respectively. And so forth with sub-models (8) vs. (9), and (10) vs. (11). 
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In reality, due to the sparsity of positive observations of dolphins, the most 

"parsimonious" weighting of different sub-models will likely include some shrinkage on both 

global and by-year interactions, such that the global main-effects describes functional 

relationships approximately persist across all years (e.g. dolphins favour a certain location / 

time regardless of year), and the by-year sub-models describe marginal variations. 

 Model outputs: RVIs and AUC statistics 

After tuning the hyper-parameters, we trained a final model for each species. These 

final models were used for inference, including estimating the relative variable importance 

(“contribution to risk-minimisation”; Elith et al. 2008) as well as spatial prediction of dolphin 

locations and abundance.  

Model performance was assessed by statistics including the area under the receiver-

operator curve (cv-ROCAUC) and the area under the precision-recall curve (cv-PRAUC) 

(Fielding and Bell 1997, Harrell Jr 2015). For the AUC statistics, values above 0.5 to 1 are 

considered improvement over random classification.  

 Differences spatial patterns between survey year 2019 and 2020 

We employed two complimentary quantitative methods to investigate differences 

between the spatial distribution of dolphins in year 2019 (our putative baseline year) and 

2020.  

The first method used the a descriptive statistical called the Structural Similarity Index 

(Wang et al. 2004), which provided a measure of the spatial correlation between two spatial 

distribution maps. The SSI statistic varies between -1 and 1, where 1 indicates high spatial 

correlation between two maps (i.e. the spatial structure of the underlying map is identical) 

and -1 indicates complete dissimilarity between the spatial structure of the underlying maps. 

We calculated the SSI statistics between spatial distribution maps generated for 2019 versus 
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2020. We repeated the calculation at several spatial resolutions (100m, 500m, 1000m). A 

high SSI would mean that there is a high similarity between two years, after removing 

variation explained by temporal effects (time-of-day, time-of-year) or factors affecting 

observational errors (glare, BSS, swell). The statistic is purely descriptive, without any notion 

of significance testing or hypothesis testing. 

The second method used a likelihood-ratio statistic (Royall 1997) between two 

models, per species: the best model according to hyperparameter tuning, versus a reduced 

model which dropped the interaction covariate “year as factor”. See Table 1 for a description 

of the 11 different sub-models and which covariates they include. The “year as covariate” is 

included in sub-models 2,5,7,9 and 11, which allows for marginals differences between years 

2019 and 2020 in terms of how dolphins respond to different effects. By removing the 

interaction covariate “year”, and measuring the change in likelihood, we have a formal 

measure for evaluating the hypothesis: “is there an important difference between models 

that allow inter-annual differences, versus a model that did not?” 

A high likelihood-ratio (much greater than 1) between the reduced model and the full 

model is evidence that the model without interannual differences is best, whereas a low 

likelihood-ratio (much less than 1) is evidence that the model with interannual differences is 

best, while a likelihood ratio close to 1 would mean that there is little difference. We used 

10-fold cross-validation to approximate the “expected likelihood” (rather than the within-

sample likelihood), such that the likelihood calculations were evaluated by training the model 

on10-different 90% subsets of the data, and estimating the likelihood on the hold-out 

sample. It should be noted that the AIC is famous for approximating the expected likelihood 

(i.e., minimising the AIC maximises the expected likelihood, Akaike 1974, Akaike 1998). 

Although p-values are unnecessary for inference on the expected likelihood (much 

like the AIC), we nonetheless approximated a p-value via our 10-fold cross-validation, 

defined as: the number of CV-runs were the reduced model had a higher likelihood on the 



 

34 
 

hold-out sample than the full-model. This approximate p-value can take on multiples of 0.1 

(i.e., 0, 0.1, 0.2, …., 1). 

 Spatial predictions 

Using the best model (according to cross-validation) we produced three types of 

spatial partial plots. The first partial plot was the probability of occurrence 

(presence/absence) of snubfin and humpback dolphins. The second partial plot was the 

expected conditional group size. The predicted probability of occurrence and group sizes 

were then multiplied to give a prediction density of snubfin and humpback dolphins in 

Cleveland Bay and Halifax Bay. 

 Spatial Interpolation 

As was performed in the previous report, as a pre-processing step prior to the species 

distribution model spatial predictions, we needed to interpolate values of some of the 

covariates (i.e., generate spatial maps). This was necessary for those covariates which were 

estimated or measured in-situ during the boat surveys (such as SST, turbidity, salinity, boats 

total, boats small, boats medium, boats large, boats fishing, boats recreational, and boats 

industrial). Being measure/estimated in a point-wise fashion, they have no natural map that 

we can use for the species distribution mode spatial prediction.  

As we did in the previous report, the spatial interpolations were conducted by pooling 

two spatial modelling techniques: 

• GAMs: model-averaging of spatial GAMs; and 

• Component-wise boosting. 

Each covariate was modelled according to both modelling techniques, and their 

spatial predictions were averaged. Both techniques allowed decomposition of variation into 
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spatial components and temporal components. Only the spatial components were used for 

generating the spatial interpolations (in other words, all temporal effects were set to their 

mean-value across the entire spatial survey area). 

Regarding missing data, we employed a two-round approach. During round #1, all 

rows of data that had missing data were deleted, and an initial working-model was made for 

SST, turbidity, salinity and all the boat-covariates, for a total of 10 models (one per covariate 

that required interpolation). The missing values of these covariates were then imputed using 

the Round #1 models, and a second round of models were run, conditional on the imputed 

values from Round 1 (thereby allowing us to use all rows of data). The Round 2 models were 

then used to interpolate the values of the covariates across the study area, for both 2019 

and 2020.  

 Spatial Interpolation by GAMs 

The spatial interpolation by GAMs consisted of running 262 models and model-

averaging their predictions by AIC weights. We used the R-package mgcv (Wood 2003). 

The different models consisted of different combinations of the following terms/sub-models: 

1. year-as-factor (i.e., different intercepts per year) 

2. two of the following main-effects using thin-plate shrinkage splines: 

◦ spline(bathymetry) 

◦ spline(distance to rivers) 

◦ spline(distance to reefs) 

◦ spline(distance to nearshore) 

◦ spline(distance to land) 

◦ spline(SST) 

◦ spline(salinity) 



 

36 
 

◦ spline(turbidity) 

3. one of the following soap-film spatial smooths: 

◦ spline(latitude, longitude) , i.e., main-effect spatial spline 

◦ spline(latitude, longitude, interaction=year), i.e., interaction with year 

4. one of the following bivariate splines:  

◦ spline(time-of-day, time-of-year), i.e., main-effect temporal spline 

◦ spline(time-of-day, time-of-year, by=year), i.e., interaction with year 

It should be noted that the GAM method benefitted from the soap-film spatial smooth 

that respects maritime boundaries and islands (unlike generic kriging methods or generic 

bivariate splines).  

It should be noted that there were additional, more-complex models that were 

possible, such models with bivariate interactions among covariates, but these often-had 

difficulty converging and failed. Nonetheless, given the small amount of data, it is reasonable 

to bias the models to only those that have a small amount of complexity (i.e., a few number 

of covariates and degrees-of-freedom), and use model-averaging to weight models 

according to their predictive performance. 

The models for SST, salinity, and turbidity used a Gaussian distribution (sometimes 

the values were log-transformed and mean-centred in order to get approximately normally-

distributed values), whereas the boat covariates (boats total, boats small, boats medium, 

boats large, boats fishing, boats recreational, boats industrial) were modelled according to 

a zero-inflated Poisson distribution (used to model count data that have many zero counts). 
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The final model was combined by discarding models with less than 5% AIC model-

weights and weighting the remaining predictions according to their AIC model-weights.  

 Spatial Interpolation by Boosting 

The second interpolation method was boosting. The technique was identical to that 

used for species distribution modelling for snubfin and humpbacks, but excluded all 

covariates relating to weather conditions (e.g., BSS, glare), thereby focusing on large-scale 

spatial processes for interpolation, and not intra-day weather variation.  

The interpolated covariates SST, salinity, and turbidity were run using a Gaussian 

distribution, whereas the boat covariates (boats total, boats small, boats medium, boats 

large, boats fishing, boats recreational, boats industrial) were modelled according to a zero-

inflated Poisson distribution. 

2.4 Data analysis: Patterns of attendance to the port area 

 Land-based surveys  

We have analysed the land-based survey data using a combination of descriptive 

statistics. This report provides the following descriptive statistics: total dolphin counts by 

species, and their behavioural compositions (resting, foraging, socialising, and travelling). 

These dependent variables are further summarised by covariates, including hours of day, 

presence of boats, presence of dredging, presence of rock dumping, as well as an overall 

comparison of the 2019 vs 2020 counts of dolphins. The later represent our primary 

inferential tool for testing whether there have been any changes on dolphin occurrence 

around the port area due to boats and CU construction activities.  

For statistical tests, we used a method called the Bayesian p-value (Gelman et al. 

1996). We used the occurrence records of 2019 as a type of “null model” (characterising 

pre-construction conditions) and calculated Bayesian p-values which compared dolphin 
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presence in 2020 to those of 2019. Low Bayesian p-values suggest that the presence of 

dolphins was lower than what would be expected according to the 2019 null-model, while 

high Bayesian p-values suggest that the 2020 data is consistent with the 2019 null-model. 

Likewise, we used the presence/absence of dolphins during non-dredging/dumping 

periods in 2019 as the “null model” (characterising normal conditions of the dolphins) and 

calculated the probability of seeing dolphin counts as low as that observed during 

dredging/dumping activities. Low Bayesian p-values provide evidence that the counts of 

dolphins were lower during human activities (i.e., a low-probability events according to the 

null-models), while high Bayesian p-values suggest that the counts during human activities 

were no different than under normal background conditions. 
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The above formalism is specific to the calculation of Bayesian p-values for binary-

occurrences. For counts/abundances, the same framework applies, but instead uses a 

Poisson-Gamma distribution as the null model. 

3. Results 

3.1 Population demographics  

 Vessel based survey effort 

We surveyed a total of 1849.6 km on transect effort over 13 days between June 22nd 

and July 27th, 2020, covering 1013.9 km in Cleveland Bay and 835.7 km in Halifax Bay (Fig. 

4, Table 2). As planned, we completed six survey repeats of each bay, each representing a 

secondary period. Similar to last year, survey effort was higher in inshore areas (1598.6 km, 

including 8.4 km of survey effort at the mouth of the Ross Creek) than in offshore areas (251 

km) due to the poor weather conditions encountered often in offshore areas (Beaufort sea 

state > 4). The vessel survey effort in 2020 was comparable to the survey effort in 2019, in 

which we completed 1767.1 km on transect effort over 15 days, covering 936.3 km in 

Cleveland Bay and 830.8 km in Halifax Bay. 
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a) Survey effort 2019 

 
b) Survey effort 2020 

Figure 4. Map of survey area showing survey transects (solid black lines) and realized 

survey effort (light blue to dark red) in Cleveland and Halifax Bay in a) June-July 2019. and 

b) 2020. Survey intensity scale represents the relative amount of times a transect was 

visited, as an approximate visual indicator of observational intensity (for data-summary 

purposes only).  
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Table 2: Summary of boat-based survey effort (total length of transects completed on 

effort) and sea state conditions encountered in Cleveland Bay (CB) and Halifax Bay (HB) 

during each complete survey (secondary period) in the 2020 primary sample (June-July).  

Study area Sec. period Date/s 

Inshore Offshore Beaufort Sea 
State 

Transect 
length (km) 

Transect 
length (km) min max mode 

Cleveland 
Bay 

1 22/06 146.2 27.5 0 3 1 

2 25/06 172.8 6.5 1 4 2 

3 04/07 122.2 10.7 1 4 2 

4 15/07 146.2 0 0 3 2 

5 17/07 146.2 11.2 0 4 2 

6 19/07 146.2 78.2 0 3 2 

Total  879.8 134.1 - - - 

Halifax Bay 

1 23/06 121.2 0 0 4 1 

2 12/07 121.2 57 0 2 2 

3 16/07 116.1 0 0 4 2 

4 18/07 121.2 0 1 3 2 

5 26/07 121.2 57.5 0 2 2 

6 27/07 117.9 2.4 1 2 2 

Total - 718.8 116.9 - - - 

 Grand total  1598.6 251    
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 Dolphin sightings, encounter rates and group sizes 

The vessel surveys in 2020 resulted in a total of 86 dolphin group sightings (including 

both on and off effort sightings) (Fig. 5a-f, Table 3). This consisted of 30 groups of snubfin 

dolphins, 55 groups of humpback dolphins, one bottlenose dolphin group, and included six 

mixed species groups of snubfin and humpback dolphins. Other marine mammals sighted 

during 2020 surveys included humpback whales and dugongs (Fig 5g-h). Encounter rates 

(Number of dolphin groups/km) of snubfin, humpback, and bottlenose dolphins over the 

whole study area (i.e. including both bays) were similar between 2019 and 2020 (Table3). 

However, encounter rates of snubfin, humpback, and bottlenose dolphin groups per bay 

were lower in 2020 than in 2019 (Table 3).In 2020, we sighted a total of 14 groups of Snubfin 

dolphins in Cleveland Bay (0.01 dolphin group/km) and 16 in Halifax Bay (0.02 dolphin 

group/km). Groups of humpback dolphins were sighted in higher numbers than snubfin 

dolphins, with 26 groups sighted in Cleveland Bay (0.03 dolphin group/km) and 29 in Halifax 

Bay (0.03 dolphin group/km) (Table 3). Only one bottlenose dolphin group was recorded in 

Halifax Bay. 

Groups of snubfin dolphins varied in size from 1 to 20 individuals, with a mean (± SD) 

group size of 4.7 ± 3.9 (based on best estimates of group size). The group size of humpback 

dolphins ranged from 1 to 20 individuals, with a mean (± SD) group size of 4.7 ± 4.1. As per 

last year, groups of all dolphin species were composed mainly of adult individuals and 

contained similar numbers of juveniles and calves (Table 4). 
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a) Snubfin dolphin sightings 2019. 

 
 

b) Snubfin dolphin sightings 2020. 

Figure 5. Location and group sizes of Australian snubfin dolphins (a-b), Humpback dolphins (c-

d), bottlenose dolphins (e-f) and other marine mammals (g-h) sighted in 2019 and 2020, during 

boat surveys in Cleveland and Halifax Bays.  
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c) Humpback dolphin sightings 2019. 

 
 

d) Humpback dolphin sightings 2020. 

Figure 5 (continued). Location and group sizes of (a-b) Australian snubfin dolphins, (c-d) 

Humpback dolphins, (e-f) bottlenose dolphins and (g-h) other marine mammals sighted in 2019 

and 2020, during boat surveys in Cleveland and Halifax Bays.  
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e) Bottlenose dolphin sightings 2019. 

 
 

f) Bottlenose dolphin sightings 2020. 

Figure 5 (continued). Location and group sizes of (a-b) Australian snubfin dolphins, (c-d) 

Humpback dolphins, (e-f) bottlenose dolphins and (g-h) other marine mammals sighted in 2019 

and 2020, during boat surveys in Cleveland and Halifax Bays.  
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g) Other marine mammal sightings 2019. 

 
 

h) Other marine mammal sightings 2020. 

Figure 5 (continued). Location and group sizes of (a-b) Australian snubfin dolphins, (c-d) 

Humpback dolphins, (e-f) bottlenose dolphins and (g-h) other marine mammals sighted in 2019 

and 2020, during boat surveys in Cleveland and Halifax Bays.  
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Table 3. Number (n) and encounter rate (total number of dolphin groups sighted per km of 

transect surveyed) of snubfin, humpback and bottlenose dolphins in Cleveland and Halifax 

Bays during 2019 and 2020 boat surveys.  

Year Species 

Cleveland Bay Halifax Bay Total 

n 
Number of 

dolphin 
groups/km 

n 
Number of 

dolphin 
groups/km 

n 
Number of 

dolphin 
groups/km 

2019 

Snubfin 17 0.07 16 0.07 33 0.02 

Humpback 13 0.05 32 0.15 45 0.03 

Bottlenose 3 0.01 2 0.01 5 0.003 

2020 

Snubfin 14 0.01 16 0.02 30 0.02 

Humpback 26 0.03 29 0.03 55 0.03 

Bottlenose 0 0 1 0.001 1 0.001 
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Table 4. Group size and age composition of snubfin, humpback and bottlenose dolphins 

encountered during boat-based surveys in the Townsville region in 2019 and 2020.  

 

 Photo-identification and capture-recapture data 

Thirty-five individual snubfin and 49 individual humpback dolphins were captured (i.e., 

photo-identified) on-effort during sampling in 2020 (Table 5). When off-effort captures were 

included, these numbers increased to 52 snubfin and 56 humpback dolphins. No bottlenose 

dolphins were photo-identified. 

Twelve snubfin dolphins were captured on-effort in Cleveland Bay and 24 in Halifax 

Bay (Table 5). One individual snubfin dolphin was captured on effort and three were 

captured on-effort plus off-effort at both sites When off-effort captures were included, the 

number captured in Cleveland Bay increased by 14 to 26, and the number captured in 

Halifax Bay increased by five to 29. Twenty-six humpback dolphins were captured on-effort 

Year Species 

Group size Group age composition 

Min Max Mean 
(SD) 

Mean proportion of 
adults, juveniles, calves 

(%) 
No. groups 

with 
juvenile or 

calf present A J C 

2019 

Snubfin 1 16 4.7 
(3.6) 77 11 10 15 (45%) 

Humpback 1 30 5.18 
(4.9) 77 11 10 28 (62%) 

Bottlenose 1 8 4.4 
(2.6) 67 10 10 4 (80%) 

2020 

Snubfin 1 20 4.7 
(3.9) 83 6 10 15 (50%) 

Humpback 1 20 4.7 
(4.1) 75 13 12 32 (58%) 

Bottlenose 3 3 3 (NA) NA NA NA 1 (100%) 
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in Cleveland Bay and 28 in Halifax Bay (Table 5). Five individuals were captured on-effort 

and eight on-effort plus off-effort at both sites. When off-effort captures were included, the 

number captured in Halifax Bay increased by ten to 38.  

The immediate objective is to assess, for snubfin and humpback dolphins, whether 

the (re)capture data on the originally-planned six secondary samples (PS_SS) are suitable 

or whether they would be better collapsed to three secondary samples (PS_SS3) for 

analysis, and whether using the off-effort together with the on-effort data would provide 

better data for analysis. 

Considering the originally planned six secondary samples (PS_SS) and on-effort only 

captures, there were no captures in at least one of the six secondary samples, and very 

small numbers of captures (≤ 3) in one or more of the samples for both species on most 

sites (Table 5). Including the off-effort captures increased these numbers somewhat but 

some zero and very small numbers of captures remained.  

Secondary samples with zero or very small numbers of captures contribute no or very 

little information to capture-recapture models. Thus, the data from the originally planned six 

secondary samples were inadequate to support informative capture-recapture population 

models. Fortunately, an even number of secondary samples was planned in anticipation of 

small numbers of captures being made to allow a strategy of collapsing each consecutive 

pair of secondary samples into one (1&2=1, 3&4=2, 5&6=3) to increase the per secondary 

sample numbers of captures (Table 5).  

There were no zero but some very small (≤ 3) numbers of captures in the on-effort 

only data in the three new secondary samples (PS_SS3): there were as few as three 

captures of snubfin dolphins in one sample in Cleveland Bay, one capture of a humpback 

dolphin in one sample in Cleveland Bay and three captures of humpback dolphins in one 
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sample in Halifax Bay (Table 5). Inclusion of the off-effort captures removed all instances of 

zero captures and most very small (≤ 3) numbers of captures in the three secondary sample 

data, although there were only two captures of humpback dolphins in one sample in 

Cleveland Bay.  

The three secondary sample data generally constituted adequate numbers of 

captures for analysis, especially if the off-effort captures were included. That only two 

humpback dolphins were captured on-and off-effort in Cleveland Bay in the first secondary 

sample makes this sample somewhat deficient, although there were good numbers in 

secondary samples two and three. Overall, although sufficient for estimates to be obtained, 

the number of snubfin dolphins captured in Cleveland Bay in 2020 over the secondary 

samples (PS_SS3) were relatively few for capture-recapture modelling and a wide 

confidence interval is expected to be associated with the respective abundance estimate . 

If the spatial distribution of off effort captures were correlated with the spatial habitat use of 

sub-groups of dolphins, inclusion of the off-effort data might have introduced heterogeneity 

of capture probabilities into the data. This question is addressed in the section on goodness 

of fit.  
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Table 5. Number of individual dolphins identified and number of captures by year, species, bay, on and off effort, and secondary sample. 

PS_SS refers to the originally planned six secondary samples; PS_SS3 refers to three secondary samples as collapsed from PS_SS (1 & 

2 =1, 3 & 4 = 2, 5 & 6 = 3). 

 

 

Year Species Bay Effort 
No of 

Individuals 
identified 

PS_SS PS_SS3 
p1s1 p1s2 p1s3 p1s4 p1s5 p1s6 p1s1 p1s2 p1s3 

2019 

Snubfin 
Cleveland 

On only 27 7 3 9 0 13 2 10 9 14 
On + off 27 7 3 9 0 13 6 10 9 14 

Halifax 
On only 36 11 1 10 0 11 11 11 10 21 
On + off 37 11 1 10 0 11 11 12 10 21 

Humpback 
Cleveland 

On only 13 0 3 10 1 0 0 3 11 0 
On + off 19 3 3 11 3 5 0 6 13 5 

Halifax 
On only 46 4 18 2 8 9 21 20 10 29 
On + off 46 4 19 2 8 9 21 21 10 29 

Bottlenose 
Cleveland 

On only 5 0 0 0 5 0 0 0 5 0 
On + off 5 0 0 0 5 0 0 0 5 0 

Halifax 
On only 0 0 0 0 0 0 0 0 0 0 
On + off 2 0 1 0 0 1 0 1 0 1 

2020 

Snubfin  
Cleveland  

On only  12 6 0 2 1 4 0 6 3 4 
On + off  26 6 0 2 10 4 7 6 11 11 

Halifax  
On only  24 0 6 5 8 8 8 6 12 16 
On + off  29 0 6 7 8 11 8 6 13 19 

Humpback  
Cleveland  

On only  26 1 0 8 6 17 5 1 11 21 
On + off  26 1 2 8 6 17 8 2 11 21 

Halifax  
On only  28 1 15 2 3 10 0 16 3 10 

  On + off  38 3 15 4 9 10 5 18 10 15 
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 Goodness of fit 

The CAPTURE preferred models (Table 6) indicate that sufficient evidence was not 

found to require models which accommodate either behavioural response to first capture or 

individual heterogeneity of capture probabilities for snubfin dolphins in Cleveland Bay or 

humpback dolphins in Halifax Bay for either the on-effort only or on-plus off-effort data. 

However, evidence of individual heterogeneity was detected for snubfin dolphins in Halifax 

Bay and humpback dolphins in Cleveland Bay. That the same models were preferred for 

both the on-effort only and on-plus off-effort data indicates that inclusion of the off-effort data 

had not introduced the observed heterogeneity effects.  

Table 6. Program CAPTURE-preferred models for the capture-recapture data on each 

species in each bay and for the on-effort only and on-plus off-effort captures. Model M0 has 

a constant capture probability, model Mt has capture probability varying by secondary 

sample (PS_SS3) while model Mh attempts to adjust for the observed heterogeneity (Chao 

1987). 

Year Species  Bay  On + Off Effort  On Effort Only  

2019 

Snubfin 
Cleveland M0 M0 

Halifax M0 M0 

Humpback 
Cleveland Mt NA* 

Halifax Mt Mt 

2020 

Snubfin  
Cleveland  M0 M0 

Halifax  Mh Mh 

Humpback  
Cleveland  Mh Mh 

Halifax  M0 Mt 

*NA indicates that CAPTURE would not run as there were too few data in only two non-zero samples. 
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 Models 

Closed population models were run in Program Mark (V8.1, White and Burnham 

1999) on the three-secondary sample (PS_SS3) on- plus off-effort capture-recapture data 

on snubfin and humpback dolphins in Cleveland and Halifax Bays. The data displaying 

heterogeneity effects were analysed using the model of Chao (1987) to correct for the 

observed heterogeneity. The models with the lower AICc was chosen for interpretation. The 

parameter estimates, their standard errors and 95% confidence intervals are shown in Table 

7.
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Table 7. Parameter estimates, their standard errors (SE) and 95% confidence intervals 

(lower and upper limits) from closed population models fitted to the on- plus off-effort data 

on snubfin and humpback dolphins in Cleveland and Halifax Bays in 2019 and 2020. 

Parameters p1, p2 and p3 are capture probabilities in the first, second and third secondary 

samples respectively, Nm is the estimate of the “marked” population size. The models used 

for each analysis are indicated in parentheses.  

Year Species Bay Parameter Estimate SE L95%CI U95%CI 

2019 

Snubfin 

Cleveland 

p1 0.20 0.069 0.10 0.37 
p2 0.20 0.069 0.10 0.37 
p3 0.20 0.069 0.10 0.37 

Nm (M0) 54 16.36 36 108 

Halifax 

p1 0.13 0.056 0.06 0.29 
p2 0.11 0.049 0.05 0.25 
p3 0.23 0.088 0.11 0.45 

Nm (M0) 89 28.69 56 180 

Humpback 

Cleveland 

p1 0.20 0.093 0.07 0.44 
p2 0.43 0.154 0.18 0.72 
p3 0.17 0.083 0.06 0.39 

Nm (Mt) 30 8.68 22 62 

Halifax 

p1 0.29 0.073 0.17 0.45 
p2 0.14 0.047 0.07 0.26 
p3 0.41 0.090 0.25 0.59 

Nm (Mt) 71 12.00 57 107 

2020 

Snubfin 

Cleveland 

p1 0.08 0.05 0.02 0.25 
p2 0.08 0.05 0.02 0.25 
p3 0.08 0.05 0.02 0.25 

Nm (M0) 121 74.76 51 396 

Halifax 

p1 0.22 NA NA NA 
p2 0.22 NA NA NA 
p3 0.22 NA NA NA 

Nm (Mh) 62 20.99 40 132 

Humpback 

Cleveland 

p1 0.28 NA NA NA 
p2 0.28 NA NA NA 
p3 0.28 NA NA NA 

Nm (Mh) 42 10.26 32 76 

Halifax 

p1 0.29 0.08 0.16 0.47 
p2 0.29 0.08 0.16 0.47 
p3 0.29 0.08 0.16 0.47 

Nm (Mt) 62 11.56 47 96 
Note:  1) N.A. Standard errors are not provided for the average capture probability from the Chao (1987) 
model in CAPTURE. 
 2) Model M0 has a constant capture probability, model Mt has capture probability varying by secondary 
sample (PS_SS3) while model Mh attempts to adjust for the observed heterogeneity (Chao 1987). 
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 Total population sizes 

The numbers of snubfin and humpback dolphins estimated to have used Cleveland 

and Halifax Bays during the sampling periods in 2019 and 2020 are summarised in this 

section. Both the estimated sizes of the marked and total populations are reported. Whereas 

in 2019 an attempt was made to estimate the sizes of the total populations of adult dolphins, 

the present estimates refer to the total populations including juveniles and calves (i.e. we 

have taken into account the proportion of all marked individuals in the population not just 

adults). This has reduced the estimated marked proportions from those previously reported 

for 2019, but the new abundance estimates provide a better representation of the total 

number of individuals in the study area. The estimates of the marked proportions of snubfin 

and humpback dolphins in the 2019 and 2020 samples are reported with their associated 

standard errors (SE), and lognormal 95% confidence intervals (lower and upper limits) are 

reported in Table 8. Estimates of the marked proportions of dolphins were used to estimate 

the total population sizes shown in Table 9. The estimated proportions of marked dolphins 

for 2020 were 0.85 (SE=0.035) for the snubfin population and 0.84 (SE=0.027) for the 

humpback population. 

Snubfin dolphins were more abundant in Cleveland Bay than Halifax Bay, while 

humpback dolphins were more abundant in Halifax Bay than Cleveland Bay. The total 

number of snubfin dolphins using Cleveland Bay in 2020 was estimated at 143 (95% CI = 

47-435) individuals and at 73 (95% CI =38-140) individuals for Halifax Bay (Table 9). The 

total population size of humpback dolphins was estimated at 50 (95% CI = 31-81) individuals 

for Cleveland Bay and 74 (95% CI = 51-107) individuals for Halifax Bay. As expected, the 

wide confidence interval associated with the abundance estimate for snubfin dolphins in 

Cleveland Bay reflects their low capture probabilities (p = 0.08) in the first, second and third 

secondary samples in 2020.  
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In 2019 both snubfin and humpback dolphins were more abundant in Halifax Bay 

than in Cleveland Bay (Table 9). This year snubfin dolphins were more abundant in 

Cleveland than Halifax Bay while humpback dolphins were again more abundant in Halifax 

than in Cleveland Bay (Table 9). However, there is considerable overlap in the confidence 

intervals of these abundance estimates, suggesting there has been no major changes in 

the abundance of either species  

 



 

57 
 

Table 8. Estimated proportions of marked snubfin and humpback dolphins in the 2019 and 2020 samples. 

Year Species Estimate SE Lower 95% CI Upper 95% CI 

2019 Snubfin 0.79 0.029 0.73 0.85 
Humpback 0.70 0.034 0.63 0.76 

2020  
Snubfin 0.85 0.035 0.77 0.91 

Humpback 0.84 0.027 0.78 0.88 
 

Table 9. Estimated numbers in the marked and total populations of snubfin and humpback dolphins that used Cleveland and Halifax 

Bays during the sampling periods in 2019 and 2020 with their associated standard errors (SE), coefficients of variance (CV) and 

lognormal 95% confidence intervals (lower and upper limits).  

   Marked population Total population 
Year Species Bay Estimate SE CV L95%CI U95%CI Estimate SE CV L95%CI U95%CI 

2019 
Snubfin Cleveland 54 16.36 0.30 36 108 68 20.72 0.30 38 122 

Halifax 89 28.69 0.32 56 180 112 36.32 0.32 60 208 

Humpback Cleveland 30 8.68 0.29 22 62 43 12.63 0.29 25 76 
Halifax 71 12.00 0.17 57 107 102 17.85 0.18 73 143 

2020 
Snubfin Cleveland 121 74.76 0.62 51 396 143 88.19 0.62 47 435 

Halifax 62 20.99 0.34 40 132 73 24.85 0.34 38 140 

Humpback Cleveland 42 10.26 0.24 32 76 50 12.45 0.25 31 81 
Halifax 62 11.56 0.19 47 96 74 14.03 0.19 51 107 
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3.2 Spatial distribution modelling 

 Model performance and spatial predictions 

There were 45 encounters of humpbacks in 2020 with associated estimates of group 

size and measurement of environmental conditions that were used for the species 

distribution modelling. Their median and mean groups sizes were 4.00 and 5.02 (SD 4.88), 

respectively. The total counts of humpback dolphins (i.e., the sum of all groups) was 226. 

The number of points comprising the pseudo-zeros used for the species distribution model 

was 581. Compared to the previous field season, the 2019 number of encounters, median 

and mean group sizes were: 45, 4.00, and 5.13 (SD 5.16) respectively. 

For snubfins in 2020, there were 31 encounters with associated estimates of group 

size and measurement of environmental conditions that were used for the species 

distribution modelling. Their median and mean groups sizes were 5.00 and 4.74 (SD 3.60), 

respectively. The total counts (sum of all groups) was 147. The number of points comprising 

the pseudo-zeros for the species distribution model was 595. Compared to the previous field 

season, the 2019 number of encounters, median and mean group sizes were: 31, 5.00, and 

4.77 (SD 3.62) respectively. 

Overall, the species distribution models of snubfin and humpback dolphin occurrence 

had good predictive performance. The final model for humpbacks had the following tuned 

hyper-parameters: 1996 boosting iterations, a learning rate of 0.018, a decision-tree 

maximum depth of 4, mincriterion-statistic of 0.4, and spatial degrees-of-freedom of 12 

(bivariate spatial splines) and 14 (spatial-auto-correlation). This model had good predictive 

performance, with a cv-ROC-AUC value of 0.905 (out of 1) and cv-precision-recall-AUC of 

0.568. The hyperparameters of the final model for snubfins was similar to that for humpback, 

but ran for 1237 boosting iterations, and had a learning-rate of 0.022. The cv-ROC-AUC 

statistic for snubfins was 0.909 (out of 1) and had an cv-precision-recall-AUC of 0.464, 
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indicating slightly weaker overall predictive performance compared to the humpbacks’ 

model. 

The spatial partial plots of humpback and snubfin dolphin across the survey area are 

shown in Figures 6 and 7 respectively. These plots show the probability of occurrence (Figs. 

6a-b and 7a-b) and the conditional group size (i.e., the total number dolphins at an 

encounter, conditional on the group actually being present) (Figs. 6c-d and 7c-d) per year. 

These two components, the occupancy, and conditional counts, make up the two 

components of the zero-inflated Poisson model. The plots also show the integration of the 

two processes, the expected counts, which is the probability of occupancy multiplied by the 

conditional counts (Figs. 6e-f and 7e-f) per year. Note that the influence of temporal 

covariates (time-of-day, day-of-year) and environmental conditions (swell, BSS, glare, 

visibility) have been set to their global averages.  
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a) 2019      b) 2020 

  
c) 2019      d) 2020 

  

e) 2019      f) 2020 

Figure 6. Spatial partial plots of snubfin dolphins from ensemble-modelling of species distribution 

across the survey area based on data collected in in 2019 and 2020: (a-b) shows how the 

probability of dolphins’ presence/absence varies spatially over the study area (c-d) shows how 

group size varies spatially, and (e-f) shows the relative density (probability of occupancy times 

group size) of snubfin dolphins across the bays in 2019 and 2020.  
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a) 2019      b) 2020 

  
c) 2019      d) 2020 

  

e) 2019      f) 2020 

Figure 7. Spatial partial plots of Australian humpback dolphins from ensemble-modelling of 

species distribution across the survey area based on data collected in 2019 and 2020: (a-b) shows 

how the probability of dolphins’ presence/absence varies spatially over the study area, (c-d) 

shows how group size varies spatially, and (e-f) shows the relative density (probability of 

occupancy times group size) of humpback dolphins across the bays.
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The species distribution models of both snubfin and humpback dolphins for Cleveland 

and Halifax Bays in 2020 showed a consistent and high probability of occurrence in waters 

close to the mainland coast (within 8km) and lower occupancy further offshore (Figs. 6 and 

7). This pattern of occurrence was very similar to the one observed in 2019 (Figs. 6 and 7). 

In Cleveland Bay, spatial predictions for 2020 showed that snubfin dolphins had a 

higher probability of occurrence (>50%) in coastal waters (~2-3km from mainland coast) 

between the Port of Townsville and Alligator and Crocodile Creeks to the east, and along 

the West Channel between Magnetic Island and Cape Pallarenda (Fig. 6b). In Halifax Bay, 

snubfin dolphins were more likely to occur in the central (Bohle River to Toolakea) and 

northern inshore areas (off and west of Toomulla) (Fig. 6b). The spatial predictions of group 

size and relative density were patchier, but reflected a similar pattern, with high-density 

hotspots in areas of high occurrence in Both Cleveland and Halifax Bays (Fig. 6d). The 

patterning of occupancy and relative density were similar in magnitude between 2019 and 

2020, but the high-density areas were slightly more expansive in area in 2019 (Fig. 6). 

In 2020 humpback dolphins showed have a consistent and high probability of 

occurrence (>50%) in waters close to mainland coast (~4 – 8km), with lower occurrence 

further offshore (Fig 7b). This was consistent along the shoreline of both Cleveland and 

Halifax Bays, except off the tip of Cape Cleveland in Cleveland Bay (Fig. 7b). Areas of high 

occurrence probability for humpback dolphins in Cleveland Bay were mainly located close 

to shore between the Ross river mouth and Kissing Point. In Halifax Bay, high occurrence 

areas were more widespread, extending from Cape Pallarenda to Toolakea and coastal 

waters off Toomulla (Fig. 7b). Their relative density generally followed the same pattern as 

the occurrence, however, there were two patches of high-count density that may reflect and 

increased grouping behaviour offshore (Fig. 7d). These patches occurred to the west of 

Magnetic Island by 8-12km in Halifax Bay, and in the centre of Cleveland Bay (Fig.7d). 
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Comparing 2019 and 2020 species distribution models, we see almost the same spatial 

patterning, except that the probability of occupancy was much greater and more extensive 

in 2020 (Fig. 7). 

 Relative Variable Importance 

The relative variable importance values (RVI) are shown in Figure 8. The RVIs 

measure how much each covariate contributes to the reduction in the model risk-function 

(negative log-likelihood). In other words, it indicates what are the most relevant predictor 

variables for snubfin and humpback dolphin spatial distribution patterns. 

For humpback dolphins, there was not one dominating covariate. The top 5 

covariates/processes all had RVIs between 8-15% which were: distance to rivers, space (in 

general, unexplained), distance to land, and year (as an interaction covariate), and time-of-

day. The high RVI allotted to unexplained spatial variation (12%, rank 2nd RVI), suggests 

that a lot of the spatial variation was not captured by known covariates. The high allocation 

to “year” as an interactive covariate (10%, rank 4th RVI) suggests that there was some 

interannual variation in the spatial distribution patterns of humpback dolphins between 2019 

and 2020. The low allocation of RVI to the number of boats (various classes of boats), such 

as “fishing boats” (3%, rank 10th) suggests that there was no large and measurable 

interaction between boating activities and dolphin’s occurrence. 

The RVI statistics for snubfins was dominated by one large spatial process: an 

unexplained spatial patterning that accounted for 48% of the explained risk-reduction. In 

other words, we do not know what is driving the snubfin’s spatial distribution (even if we can 

model it). The remaining covariates were all less than 7.1% of the explained risk-reduction. 

Notably, “year” as an interactive covariate had only 5% RVI, suggesting that interannual 
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variation is less prevalent among Snubfins, or that their spatial distribution changed only 

slightly between 2019 and 2020. 

As was mentioned in the previous report, one should keep-in-mind that ensemble-

modelling plus the existence of multi-collinearity among environmental predictors means 

that it is difficult to assign RVI to any one particular covariate, if it has a lot correlation with 

other covariates (Bühlmann et al. 2013). However, correlation is not a problem for prediction 

and species distribution model interpolation, only for attributing explained variation to unique 

features. 
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a)  

 
b)  

Figure 8. The relative variable importance (contribution to risk-minimisation) of each 

covariate considered in ensemble species distribution modelling of a) Australian humpback 

and b) snubfin dolphins based on data collected in 2020. 
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 Differences between spatial patterns between survey years 2019 and 2020  

Structural Similarity Indices 

We calculated SSI values which compared the species distribution model maps in 

2019 vs 2020, at multiple spatial resolutions (Table 10). Overall, the SSI showed high spatial 

correlation (SSI > 0.5) for both species, indicating there were no major changes in the spatial 

distribution of snubfin and humpback dolphins in the study area between 2019 and 2020. 

The species distribution model of humpback dolphins had lower SSIs than snubfins, and the 

SSI statistic decreased as the spatial resolution increased from 100m to 1000m. This 

suggests broader scale processes are more different between 2019 and 2020 than smaller 

scale processes (although the correlation is still positive and relatively high ~0.5). In contrast, 

the snubfin SSI statistics were uniformly high, suggesting a strong correlation and similar 

spatial distribution in 2019 and 2020. Together the SSI statistics reveal that the snubfins had 

a consistent spatial patterning across the years, while humpbacks had slightly less 

interannual correlation, especially at larger scales. 

Table 10. Structural Similarity Indices (SSI) between species distribution models of 

Australian snubfin and humpback dolphins in 2019 and 2020 in the Townsville region.  

Species 
Spatial Resolution of Predictions (m) 

100 500 1000 
Humpback dolphin 0.75 0.67 0.52 

Snubfin dolphin 0.88 0.88 0.85 

 

  



 

67 
 

Likelihood Ratio 

The generalized likelihood-ratio between (best) full model and the reduced model (that 

dropped “year” as a covariate) for humpbacks was 2.04-18 which was far less than 1. Using 

the cross-validation results to approximate a p-value, this p-value was approximately 0.000. 

For snubfins, the likelihood ratio was 3.95-22, and had an approximate p-value of 0.100. 

Therefore, for both species, there was strong evidence that the best model should include 

year as an interaction-covariate, and that there were important interannual differences in the 

spatial processes influencing dolphin’s spatial distribution. Examination of the species 

distribution model maps between 2019 and 2020, suggest that the occurrences were slightly 

more expansive in 2019 for snubfin and more expansive in 2020 for humpback dolphins, but 

overall dolphins were spatially distributed over similar areas across years (Figs. 6 and 7). 
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3.3 Patterns of attendance to the port area 

 Land based survey effort 

We were able to conduct land-based observations on 18 days between the 22nd of 

June and the 28th of July, completing a total of 948 scans (compared to 870 scans in 2019) 

(Table 11). Out of the 18 days surveyed humpback dolphins were seen on 4 days, snubfin 

dolphins on 9 days, and bottlenose dolphins on 0 days. Similar to last year, there were more 

observations of snubfins (present in 34 scans) than humpbacks (present in 7 scans) (Table 

11). Overall, however, there were less observations of both species in comparison to 2019. 

In 2019, out of 17 days surveyed, humpback dolphins were sighted on 10 days (over 20 

scans), snubfin dolphins on 9 days (over 50 scans), and bottlenose dolphins on one day 

(over 1 scan). No dolphins were observed within the body of water being enclosed by the 

rock wall under construction.  

 Overall difference in dolphin occurrence between year 1 (2019) and year 2 (2020) 

The quantitative assessment of differences between dolphin occurrence between 

2019 and 2020 suggest that there was a significant difference (Table 12). The Bayesian P-

values were 0.02 for snubfins, and 0.01 for humpbacks. This assessment is interpreted as 

the following: assuming the 2019 period served as a null-model of the occupancy, there is 

a low probability (Bayesian p-value) that the realised counts of dolphins in 2020, of either 

species, were consistent with the null models. Overall, there was a decrease in the number 

of snubfin and humpback dolphins that were observed from land-based surveys during 

2020.  
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Table 11. Survey effort and dolphins observed from entrance to Berth 11 at the Port of 

Townsville during June-July 2020. BSS= Beaufort Sea State at which observations were 

conducted. 

Date 
Number 

of 
scans 

Number of scans 
with humpback 

dolphins present 

Number of scans 
with snubfin 

dolphins present 

Number of scans 
with bottlenose 

dolphins present 

BSS 
min 

BSS 
Max 

BSS 
Mode 

2020-06-22 48 0 0 0 1 2 1 

2020-06-23 48 0 0 0 1 3 1 

2020-06-24 42 0 0 0 1 4 1 

2020-06-25 48 0 0 0 1 4 2 

2020-07-04 48 4 0 0 1 3 1 

2020-07-11 48 0 0 0 1 3 2 

2020-07-12 50 0 0 0 1 3 1 

2020-07-15 48 0 7 0 1 3 1 

2020-07-16 54 0 4 0 1 4 1 

2020-07-17 50 0 6 0 0 4 1 

2020-07-18 62 0 0 0 1 4 1 

2020-07-19 62 0 0 0 0 3 1 

2020-07-20 54 0 8 0 1 4 1 

2020-07-21 40 0 0 0 1 3 2 

2020-07-25 60 0 0 0 1 3 1 

2020-07-26 60 2 3 0 1 2 1 

2020-07-27 64 0 3 0 0 3 1 

2020-07-28 62 1 3 0 1 3 1 

TOTAL 948 7 34 0    
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Table 12. Comparison of dolphin occurrences between 2019 and 2020 by Bayesian P-

values. 

Species Year Number of 
Scans 

N occurrences of 
dolphins Bayesian P-value 

Snubfin 
2019 869 49  
2020 948 34 0.02 

Humpback  
2019 869 19  
2020 948 7 0.01 

 

 Diel and behavioural patterns observed 

Both snubfin and humpback dolphins were observed mainly foraging around the port 

(Table 13). Snubfin dolphin sightings peaked in the morning at 9:00-11:00 and were absent 

in the afternoon from 13:00 onwards (Fig. 9). Humpback dolphin sightings peaked between 

11:00-13:00, were also observed in the afternoon (13:00-17:00), but not seen in the early 

morning (7:00-9:00) (Fig. 9). Throughout the morning hours snubfin dolphins were seen 

foraging, whereas humpbacks were observed socializing in the morning (9:00-11) and 

mostly foraging from 11:00 onwards (Fig. 9). 

For comparison across both survey years (2019 and 2020), the pooled distribution of 

species counts by time-of-day, and by behavior, are also shown in Fig 10. The pooled 

estimates likewise reveal that snubfin dolphins spend most of their time foraging and 

travelling in the morning between 7-11, whereas humpbacks are more consistent across the 

day, in both foraging and travelling. 
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Table 13. The total number of scans where either species was present (and behaviour could 

be determined) during 2020 land-station surveys, and the proportion of times they were 

observed engaged in foraging, resting, socializing and travelling behavior. The pooled 

numbers for survey years 2019 and 2020 are also shown below. 

Species Year 
Number of 
Scans with 

Species 
Present 

Foraging Resting Socialising Travelling 

Snubfin 2020 29 0.97 0.03 0.00 0.00 

Humpback 2020 7 0.71 0.00 0.29 0.00 

Snubfin Pooled 
2019/20 76 0.75 0.03 0.03 0.20 

Humpback Pooled 
2019/20 25 0.56 0.00 0.08 0.36 
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a) 

 
b) 

Figure 9. a) Australian Snubfin and b) humpback dolphin observations by time of day 

(approximately 2 hourly bins) in 2020. Bar height represents densities of counts (number of 

dolphin’s groups seen divided by number of scans); bar compositions represent proportion 

time observed in various behaviours.  
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a) 

 
b) 

Figure 10. Pooled observations (2019 and 2020) of a) snubfin and b) humpback dolphins 

by time of day (2 hourly bins). Bar height represents densities of counts (number of dolphin 

groups seen divided by number of scans); bar compositions represent proportion time 

observed in various behaviours.  
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 Dolphins patterns of occurrence in relation to boats, dredging and rock dumping  

In relation to the presence of boats in 2020, snubfin dolphins seemed to become 

absent as the number of boats increased (Fig. 11a). This was very different from the pooled 

counts of boats and behaviours (pooled for both 2019 and 2020), where the differences in 

behaviours and counts was not obviously related to the number of boats present (Fig. 12a). 

Humpback dolphins appeared to shift their behavior from foraging at low-boat presence, to 

travelling at high-boat presence. This pattern seemed pronounced during the 2020 survey 

year (Fig. 11b) but was not so obvious when compared to the pooled distribution of boats 

and behaviours across both 2019 and 2020 (Fig. 12b). In the latter case, the heterogeneity 

of all behaviours seemed to be greater as the number of boats increased.  
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a) 

 

b) 

Figure 11. Counts of a) snubfin and b) humpback dolphins groups observed and their 

behaviours, stratified by the number of boats present, for the 2020 survey-year. Bar height 

represents densities of counts (number of dolphin groups seen divided by number of scans). 
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a) 

 
b) 

 

Figure 12. Counts of a) snubfin and b) humpback dolphins groups observed and their 

behaviours, stratified by the number of boats present, and pooled across survey years 2019 

and 2020. Bar height represents densities of counts (number of dolphin groups seen divided 

by number of scans). 
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Out of 948 scans carried out from Berth 11, maintenance dredging by the trailing 

suction hopper dredger (TSHD) Brisbane was recorded during three scans. While there 

were no observations of dolphins, of either species, during the dredging activities (Table 14), 

the high P-Bayes statistics suggest that the probability of observing no-dolphins was 

consistent with the background/null distribution of dolphin-occupancy during normal non-

dredging scans. In other words, the absence of dolphins during dredging cannot be 

considered unusual. 

Table 14. Land-based occurrences of snubfin and humpback dolphins from Berth 11 during 

dredging and non-dredging operations in 2020 (top) as well as pooled across survey-years 

2019 and 2020 (bottom). 

Species Year Dredging 
Presence N-scans N Occurrences 

of Dolphins P-Bayes 

Snubfin 2020 
no 945 34 NA 
yes 3 0 0.89 

Humpback 2020  
no 945 7 NA 
yes 3 0 0.98 

Snubfin 
Pooled 

2019 and 
2020 

no 1805 83 NA 

yes 12 0 0.57 

Humpback 
Pooled 

2019 and 
2020 

no 1805 26 Na 

yes 12 0 0.84 
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The above results were similar to the statistics from the 2019 analyses. When we 

pooled counts of dredging and dolphin counts across both 2019 and 2020, the Bayesian P-

statistics are lower (i.e., more concerning) but not low enough to conclude that the counts 

were inconsistent with the null-model (no-dredging). Note that in 2019 and 2020 no capital 

dredging occurred, dredging activities were limited to maintenance dredging. 

Rock-dumping activities were present during 401 of the visual scans in 2020. There 

were no rock-dumping activities during 2019. Table 15 shows the Bayesian P-values 

comparing counts of dolphins when dumping was present vs the null-model (no rock-

dumping present). Snubfins had a high p-value (0.98) suggesting no differences in the 

patterns of their occurrence in relation to rock dumping. In contrast, humpbacks dolphins 

had a very small p-value (0.01) suggesting that their patterns of occurrence around the port 

were different from the null-model. The occurrence of humpback dolphins around the port 

appears to have decreased during rock dumping activities (0 occurrence of humpbacks 

during all the rock-dumping activities, versus 7 occurrences during non-rock-dumping 

scans). However, interpretation should be taken with caution as the number of humpback 

dolphins sighted during non-rock-dumping activities was low (n =7) . 

Table 15. Land-based occurrences of snubfin and humpback dolphins from Berth 11 during 

rock dumping and non-dumping scans in 2020.  

Species Rock-Dumping 
Present 

Number of 
Scans 

N occurrences 
of dolphins Bayesian P-value 

Snubfin 
no 542 14 NA 
yes 397 20 0.98 

Humpback 
no 542 7 NA 
yes 397 0 0.01 
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4. Discussion and conclusions 

4.1 Survey effort 

The 2020 early-construction monitoring of inshore dolphins for the Port of Townsville 

proceeded well despite some weather and logistical constraints, largely surrounding COVID-

19 travel related restrictions on staffing. As planned, we were able to repeat six full surveys 

of Cleveland and Halifax Bay between June-July. Most survey effort focused on inshore 

waters due to predominant unfavourable conditions (Beaufort Sea State > 4) encountered 

in offshore transects, which was similar to 2019. 

As in previous year, we were not able to survey Bowling Green Bay because boat-

ramp at Cape Fergusson is still not accessible due to floods and rain in February and March 

2019. We do not foresee Bowling Green bay been accessible in the future and given the 

two years of monitoring already underway we recommend continuing to focus survey effort 

on Cleveland Bay and Halifax Bay.  

4.2 Estimates of Abundance 

Adequate data were available to obtain estimates of abundance for snubfin and 

humpback dolphins in Cleveland Bay and Halifax Bay using closed capture-recapture 

population models. The total number of snubfin dolphins using Cleveland Bay and Halifax 

Bay in 2020 was estimated at 143 (95% CI = 47-435) and 73 (95% CI =38-140) individuals, 

respectively (Table 9). The total population size of humpback dolphins was estimated at 50 

(95% CI = 31-81) individuals for Cleveland Bay and 74 (95% CI = 51-107) individuals for 

Halifax Bay (Table 9). In the future, similar data collected over three years will support the 

use of Multistate Closed Robust Design models (MSCRD) to estimate rates of apparent 

survival (alive and in the area), temporary emigration and potentially also movement 

between sites in addition to population sizes. 
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In comparison to last year, our 2020 abundance estimates indicated that snubfin and 

humpback dolphins were more abundant in Cleveland Bay and less so in Halifax Bay than 

in 2019 (Table 9). There was considerable overlap in the confidence intervals around the 

estimates across years however, suggesting that there has been no major change in the 

abundance of either species in Cleveland or Halifax Bay. Some of the abundance estimates 

for 2020, particularly the one for snubfin dolphins in Cleveland Bay, should be interpreted 

with caution due to potential biases because of low and heterogeneous capture probabilities.  

In contrast to 2019, heterogeneity in capture probabilities was observed in the 2020 

data for snubfin dolphins in Halifax Bay and humpback dolphins in Cleveland Bay. 

Heterogeneous and low capture probabilities are a common problem in many capture—

recapture studies, particularly of species occurring at low densities such as humpback and 

snubfin dolphins, and can lead to biased estimates of abundance when using models 

assuming no heterogeneity (Otis et al. 1978, Amstrup et al. 2005). Therefore, we used 

models that incorporate heterogeneity of capture probability and corrected for the observed 

heterogeneity (Chao 1987). In 2020, the estimated capture probabilities ranged from 0.22 to 

0.29 except for snubfin dolphins in Cleveland Bay which were 0.08. Capture probabilities 

greater than 0.20 are adequate to support reliable population size estimates with relatively 

good precision while a capture probability of 0.08 is not. Consequently, while the estimates 

for humpback dolphins in both bays and snubfin dolphins in Halifax Bay are considered 

reliable (CVs ranging from 0.19 to 0.34), the estimate of the number of snubfin dolphins in 

Cleveland Bay (143, 95% CI = 47-435) is questionable (CV=0.62). The uncertainty that their 

low capture probability generates is reflected in the wide 95% confidence interval. The low 

capture probabilities of snubfin dolphins in 2020 can stem from spatial aspects of sampling 

(e.g. dolphins occurred in lower density and were not encountered often within the area 

sampled), sampling (e.g. failure to obtain good quality photographs of individuals within each 

group encountered) and behaviour (animal encountered were difficult to approach, animals 
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spending more time outside than inside study area). The low capture probabilities 

encountered this field season are likely a result of a combination of all these factors.  

The confidence intervals around future population size estimates from an MSCRD 

model may be narrower than those obtained from closed population models due to 

parameter sharing and a higher data to parameters ratio. The use of the planned MSCRD 

model in the future and the estimation of apparent survival, temporary emigration, and 

especially movements between sites, in addition to abundance will depend highly on 

obtaining as good or better capture probabilities as those obtained here. 

In summary, despite some uncertainty associated with 2020 abundance estimates 

due to low capture probabilities (snubfin dolphins in Cleveland Bay) and heterogeneity 

effects (snubfin dolphins in Halifax Bay and humpback dolphins in Cleveland Bay), 

abundance estimates of snubfin and humpback dolphin in Cleveland and Halifax bay fall 

within the range of past estimates and do not show a decreasing trend in population size. 

4.3 Spatial distribution 

The species distribution models of both snubfin and humpback dolphins for 2019 and 

2020 in both Cleveland and Halifax Bays showed a consistent and high probability of 

occurrence in waters close to the coast and lower occupancy further offshore (Figs. 6-7). 

Their relative density generally followed the same pattern as their occurrence, with areas of 

high occurrence also being the most with high density of dolphins. The high use of inshore 

waters in Cleveland Bay and Halifax Bay by snubfin and humpback dolphins corroborates 

what has been observed in previous studies (Parra 2006, Nagombi 2018), indicating the 

continued importance of coastal habitats for these species.  

Comparison of the spatial predictions of species distribution models maps using the 

Structural Similarity (SSIM) index revealed a strong correlation across years (Table 10). This 
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indicated that there were no major changes in the spatial distribution of snubfin and 

humpback dolphins in the study area between 2019 and 2020. The generalized likelihood-

ratio showed that the best model should include year as an interaction-covariate, and that 

there were marginal but important interannual differences in the spatial processes 

influencing dolphin’s spatial distribution. Such marginal variations per year are expected 

given the seasonally dynamic nature of the covariates involved in the models and the 

distributional dynamics of highly mobile species such as dolphins.  

4.4 Patterns of attendance to the port area 

Land-based observations from the entrance to Berth 11 within the Port of Townsville 

in 2020 were feasible throughout the day on good weather conditions. It is important to note, 

as we mentioned earlier, that during 2020 we used a different observation point than 2019. 

Although the new observation point is relatively close to the one used in 2019 (~400m away), 

it is not as high above sea level (LAT +8.22m above water) as the one use during 2019 

(LAT+9.5m  above water) and thus observers visibility was reduced. Thus, the result of our 

comparisons and inferences regarding dolphin’s presence/absence around the port in 2020 

and 2019 should be taken with caution, as we cannot separate the effect the new 

observation point may have on dolphin observations. It is strongly recommended that the 

observation point for the remainder of the project stays fixed on the elevated point at Berth 

11 used in 2019 as to not compromise any future comparisons.  

Both snubfin and humpback dolphins were observed in inshore waters adjacent to 

the Port (Table 11). Despite similar observation effort across years, comparison of dolphin 

occurrences between 2019 and 2020 revealed significant differences, with less observations 

of both species in 2020 (Table 12). The low number of dolphin observations in 2020 may be 

a result of dolphins using the waters around the port less frequently or simply a result of the 

lower vantage point used for observations during 2020. The latter seems more likely, given 
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the sightings and the dolphins high probabilities of occurrence in areas around the port 

revealed by boat surveys (Fig. 5) and species distribution models (Fig. 6). 

As in previous year, both species were observed mainly foraging (Table 13) around 

the port throughout different hours of the day, with snubfin dolphin sightings peaking in the 

morning at 9:00-11:00 and humpback dolphins sightings peaking towards midday between 

11:00-13:00 (Fig. 9). In relation to the presence of boats in 2020, snubfin dolphins seemed 

to become absent as the number of boats increased , while humpback dolphins appeared 

to shift their behavior from foraging at low-boat presence, to travelling at high-boat presence 

(Fig.11). This pattern seemed pronounced during the 2020 survey year but was not so 

obvious when compared to the pooled distribution of boats and behaviours across both 2019 

and 2020 (Fig. 12).  

While there were no observations of dolphins, of either species, during the maintenance 

dredging activities (Table 14), the probability of observing no-dolphins was consistent with 

the background/null distribution of dolphin-occupancy during normal non-dredging scans. 

Therefore, the absence of dolphins during dredging cannot be considered unusual. 

Snubfin dolphins’ patterns of occurrence around the port did not seem to be affected 

by rock-dumping activities associated with the rock wall construction (Table 15). In contrast, 

the occurrence of humpback dolphins around the port decreased during rock dumping 

activities (Table 15). Due to the differences in the location of the observation point we cannot 

be certain the decrease in sightings of humpback dolphins is a result of rock-dumping 

activities. 

Despite the limitations involved due to the change in the spatial location of our 

observation point, land-based observations together with vessel observations and species 

distribution models corroborated the frequent occurrence and use by both dolphin species 
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of the coastal waters around the Port of Townsville, mainly for foraging and travelling 

activities as has been shown in the past (Parra 2006, Nagombi 2018).  
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