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Executive Summary 

Background 

The Port of Townsville Limited (POTL) Inshore Dolphin Monitoring Program (IDMP) 

was introduced as part of their environmental approval under the Commonwealth 

Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) for the 

Townsville Port Channel Upgrade Project (CU Project). The aims of the IDMP are to 

establish baseline information and monitor and report on changes beyond natural spatial 

and temporal variation in the distribution, abundance, habitat use and behaviour of 

Australian snubfin dolphins (Orcaella heinsohni) and Australian humpback dolphins (Sousa 

sahulensis) in association with the CU Project construction activities. The IDMP will be 

implemented over pre-, during and post-CU Project construction activities. Pre-construction 

monitoring began in June 2019 following the approved study design and methods outlined 

in the IDMP scope of work developed for the CU-Project (Parra et al. 2019). In this report, 

we summarise data collected during boat and land-based surveys in 2019. The data 

collected, and analyses presented here, are intended to help inform the development of 

future model-based analyses, as well as provide a baseline on dolphin abundance and 

spatial distribution in the study area and patterns of occurrence (presence/absence) around 

the Townsville port area under pre-construction conditions. 

Methods 

The IDMP methodology involved an integrated approach including boat and land-

based surveys. The boat-based surveys required a total of 12 people (4 per research 

vessel), and the land-based surveys required a team of three people. We made efforts to 

source local university students to work with us while providing training, jobs and skilling of 
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professional workers. Half of our research team was made up of local graduate students, 

and the other half were professionals from interstate.  

Sampling began on the 1st of June and ended on the 14th of July 2019. Vessel and 

land-based surveys were conducted during daylight hours (i.e. between 07:00 and 17:00), 

in suitable weather conditions. The vessel survey was designed to sample three similarly 

sized areas in Cleveland Bay, Halifax Bay and Bowling Green Bay. Access to Bowling Green 

Bay was not feasible, however, due to the February-March 2019 storm damage to Australian 

Institute of Marine Science’s (AIMS) boat ramp at Cape Ferguson. The closest other 

available boat ramps required considerable travel time by road (over an hour) and rivers 

(over 30mins) and were highly tide dependant, thus making it impractical to conduct vessel-

based surveys in this bay under the planned allotted time. Therefore, vessel surveys were 

only conducted in Cleveland Bay and Halifax Bay. We used three vessels simultaneously to 

cover inshore and offshore areas of both bays to collect data on inshore dolphin occurrence, 

undertake photo-identification, and record environmental parameters (i.e. water depth, sea 

surface temperature, turbidity, and salinity) associated with dolphin’s sightings and study 

area. Capture-recapture histories of distinctive individuals from photo-identification data 

were used to estimate abundance of snubfin and humpback dolphin in Cleveland Bay and 

Halifax Bay using capture-recapture population models. Species distribution modelling 

methods were used to model the distribution of snubfin and humpback dolphin occurrence 

(presence/absence) and group size across the study area as a function of spatial-temporal 

covariates. The predicted probability of occurrence and group sizes were multiplied to give 

a prediction of relative density of snubfin and humpback dolphins in Cleveland Bay and 

Halifax Bay. 
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We conducted visual land-based observations from Berth 11 within the Port of 

Townsville, covering a radius ≤ 1 km around the observation point. Visual scans every 15 

min were used to record presence or absence of dolphins, their group size, age composition, 

behaviour, the number and types of boats traversing the area, and the presence or absence 

of maintenance dredging not associated with CU Project (i.e. routine dredging carried out 

every year to remove material that has drifted into the channel over time and limits the 

access of ships). Land-based survey data was analysed using descriptive statistics (e.g. 

total dolphin counts by species, and their behavioural composition) and further summarised 

by a range of covariates (i.e. hours of day, presence of boats, and presence of maintenance 

dredging). 

Results 

Abundance 

A total of 1767.1 kms were travelled on transect effort over 15 days between 1st June 

and 14th July 2019, completing six survey repeats of Cleveland Bay and Halifax Bay. Survey 

effort was higher in inshore areas (1577.1 km) than in offshore areas (190 km) due to the 

poor weather conditions encountered often in offshore areas (Beaufort sea state > 4). We 

recorded a total of 83 dolphin groups (including both on and off effort sightings), consisting 

of 33 snubfin dolphin sightings and 45 humpback dolphin sightings, and five bottlenose 

dolphin sightings. Snubfin and bottlenose dolphins were sighted at the same rate in 

Cleveland Bay and Halifax Bay, whereas humpback dolphins were more frequently sighted 

in Halifax Bay. Sixty-one individual snubfin dolphins, 60 individual humpback dolphins and 

seven bottlenose dolphins were photo-identified on and off effort during sampling in 2019. 

Three snubfin and four humpback dolphin individuals were photo-identified at both sites, 

whereas no bottlenose dolphin was identified at both sites. 
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Using closed population models, we estimated the total number of snubfin dolphins using 

Cleveland Bay at 54 (95% CI = 33-106) individuals and at 89 (52-181) individuals for Halifax 

Bay. The total population size of humpback dolphins was estimated at 30 (95% CI = 19-59) 

individuals for Cleveland Bay and at 71 (95% CI = 57-112) individuals for Halifax Bay. Given 

the small numbers of bottlenose dolphins photo-identified we were not able to generate 

estimates of abundance for this species. 

Spatial distribution 

Preliminary species distribution models indicated that humpback dolphin occurrence and 

relative density tended to be higher in Cleveland Bay for inshore waters between the Port of 

Townsville and Magnetic Island, and for inshore and offshore waters around the centre of 

Halifax Bay. For snubfin dolphins, areas of high dolphin occurrence were predicted along 

the central and northern inshore and offshore areas of Halifax Bay, between Cape 

Pallarenda and Magnetic Island, and to the east along the inshore waters between the Port 

of Townsville and Cape Cleveland. A higher density of snubfin dolphins was predicted to 

occur mainly towards the centre of Cleveland Bay between the port of Townsville, Magnetic 

Island and Cape Cleveland to the east. For both species, most of the variation regarding the 

predicted number of dolphins across the study area was allotted to unknown spatial 

processes rather than environmental parameters. Model performance statistics indicated 

that the predicted ability of the models was limited, with only slightly-better-than random 

predictive ability. These models will be fine-tuned as more dolphin data become available, 

and we refine both the parameters included in the models, and our new methods to handle 

group size uncertainty. 
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Patterns of attendance to the port area 

We conducted 870 visual scans from the land-based platform at Berth 11. Snubfin 

dolphins were seen on 9 days and present in 50 scans, humpback dolphins were observed 

on 10 days and present in 20 scans, and bottlenose dolphins were seen on one day in a 

single scan. Snubfin and humpback dolphins were observed throughout different times of 

the day, engaged mainly in foraging and travelling behaviours. Snubfin dolphin sightings 

peaked between 07:00 and 09:00 in the morning, and between 13:00 and 15:00 in the 

afternoon. Humpback dolphin sightings peaked between 09:00 and 11:00 in the morning, 

and between 15:00 and 17:00 in the afternoon. Snubfin and humpback dolphin occurrence 

and behaviour showed no distinct patterns in relation to the presence of boats or 

maintenance dredging.  

Discussion and conclusions 

Despite some weather and logistical constraints, the 2019 pre-construction monitoring of 

inshore dolphins proceeded well, and we were able to gather important baseline data on the 

distribution and abundance of snubfin and humpback dolphins in Cleveland and Halifax Bay 

under pre-construction conditions of CU Project.  

The abundance estimates for snubfin and humpback dolphins in Cleveland Bay and 

Halifax Bay, their predominant inshore spatial distribution, and frequent occurrence around 

the port area resembles historical patterns and suggests the populations have remained 

relatively stable over time. The analysis used and estimates of abundance and spatial 

distribution obtained fairly represent the state of the local inshore dolphin populations at the 

baseline stage of the study in June-July 2019. The data collected offer a sound platform on 

which to inform future model-based analyses, improve the precision of estimates, and refine 
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the analytical framework to optimise the capacity of the study to detect substantial changes 

in population demographics and spatial habitat use in the study area.   
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1. Introduction 

The Townsville Port Channel Upgrade Project (CU Project) is a joint project of the 

Queensland and Australian Governments and Port of Townsville Limited (POTL). The CU 

project is the first stage of the long-term Port Expansion Project and will be delivered over a 

period of six years from 2018 to 2023. The expansion of the Port of Townsville is needed to 

accommodate forecast growth in trade at the port and address current capacity constraints. 

As part of the environmental approvals under the Commonwealth Environment Protection 

and Biodiversity Conservation Act 1999 (EPBC Act) for the CU project, POTL was required 

to develop and implement an Inshore Dolphin Monitoring Program (IDMP). 

The aims of the IDMP are to establish baseline information and monitor and report 

on changes, beyond natural spatial and temporal variation, in the distribution, abundance, 

habitat use and behaviour of the Australian snubfin dolphin (Orcaella heinsohni) and the 

Australian humpback dolphin (Sousa sahulensis) in association with the CU Project 

construction activities. Both species are listed as: Matter of National Environmental 

Significance (NES) under the EPBC Act; ‘Vulnerable’ by the International Union for 

Conservation of Nature (IUCN) (Parra et al. 2017a, Parra et al. 2017b); ‘Near Threatened’ 

in the Action Plan for Australian Mammals 2012 (Woinarski et al. 2014); and ‘Vulnerable’ in 

Queensland, under the Nature Conservation Act 1992. The IDMP will be implemented over 

pre-, during and post-CU Project construction activities. The findings from the IDMP will be 

used to inform management decisions for the project on an ongoing basis. 

The specific objectives of the Inshore Dolphin Monitoring Program are to: 

1. Objective One: Develop an Inshore Dolphin Monitoring Program consistent with the 

Coordinated National Research Framework to inform the Conservation and Management of 

Australia's Tropical Inshore Dolphins (Department of the Environment, 2015), or subsequent 
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document; and that provides consistent and scientifically valid monitoring methodologies to 

be able to determine trends and identification of stressors with the potential to cause adverse 

impacts for these species. This program is to cover pre-, during and post-construction 

timescales as separate identified study stages and reporting deliverables. 

2. Objective Two: Provide a baseline assessment on the distribution, abundance and 

habitat use of the Australian snubfin dolphin and the Australian humpback dolphin species 

in areas of Cleveland Bay that may be directly or indirectly impacted by the CU Project and 

adjacent non-impacted sites. 

3. Objective Three: Monitor and report on changes, beyond natural spatial and temporal 

variation, to the population and behaviour of the Australian snubfin dolphin and the 

Australian humpback dolphin throughout construction, pile driving operations and dredging 

activities for the CU Project, and a sufficient period of time post-construction to identify any 

changes in population and behaviour of the identified dolphin species as a result of the said 

activities. 

4. Objective Four: Provide recommendations on key areas of adverse impact and 

potential mitigation measures, including the identification of residual adverse impacts in 

Cleveland Bay which cannot be managed.  

5. Objective Five: Contribute to improving public awareness during the works on the 

inshore dolphin populations in Cleveland Bay. 

The IDMP of snubfin and humpback dolphins for the CU project commenced in July 

2019. The 2019 inshore dolphin surveys constituted the pre-construction phase as no 

construction activity occurred during this period. Therefore, and in line with the scope of 

work, the objective of this report is to provide a baseline assessment on the distribution, 
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abundance and habitat use of the Australian snubfin dolphin and the Australian humpback 

dolphin species in areas of Cleveland Bay that may be directly or indirectly impacted by the 

CU Project and adjacent non-impacted sites. Although snubfin and humpback dolphins are 

the primary focus of the IDMP, information is also presented on bottlenose dolphins 

(Tursiops spp.).  

2. Methods 

2.1 Data collection 

2.1.1 Scientific permits and animal ethics 

The 2019 inshore dolphin monitoring was conducted under Scientific Permit 

G19/42001.1 issued by the Great Barrier Reef Marine Parks Authority, permit SPP19-

001808 from the Queensland Department of Environment and Science, and Animal ethics 

approval E477/18 from the Animal Ethics Committee of Flinders University.  

2.1.2 Training 

All IDMP personnel received boat and land safety induction and were trained in 

survey techniques and protocols between 28th-31st of May 2019. During these days we 

tested all boat and land-based equipment and data collection procedures. 

2.1.3 Vessel-based survey methods 

As described in detail in the Inshore Dolphin Monitoring Program developed for the 

CU-Project, the vessel sampling design for the IDMP is built on a Robust Design sampling 

structure (Pollock et al. 1990, Kendall 2013) of one primary sample per year (June-July), 

consisting of six secondary samples (i.e. a complete survey) at each of three similarly sized 

areas: Cleveland Bay, Halifax Bay and Bowling Green Bay (Fig. 1). Due to the rain and floods 

in the Townsville region during February-March 2019, boat ramp access to Bowling Green 

Bay at Cape Ferguson within the Australian Institute of Marine Science (about 50 km from 
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Townsville’s CBD) was inaccessible. Therefore, surveys were only conducted in Cleveland 

Bay and Halifax Bay. 

 

Figure 1. Map showing the proposed survey design (including inshore/offshore transects 

and environmental sampling stations) to cover areas of similar size in Cleveland Bay, 

Halifax Bay and Bowling Green Bay. 

Sampling methods followed standard procedures applied in capture-recapture 

studies of inshore dolphin studies (Parra et al. 2006b, Cagnazzi et al. 2011). We used 

automated survey design algorithms (Strindberg and Buckland 2004) implemented in the 

software program Distance (Thomas et al. 2009) to design a systematic random line transect 

survey with regular line spacing (1.6 km apart and at 45º to the shore) covering both inshore 

and offshore areas within each of the survey sites (Fig. 1). Systematic line spacing results 

in even spatial distribution of sampling effort, uniform coverage probability and better 
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information on dolphin’s spatial distribution and environmental variables than random 

designs (Du Fresne et al. 2006, Thomas et al. 2007). Surveys covered inshore and offshore 

areas depending on weather conditions. 

We used three Rigid Hull Inflatable Vessels (RHIB Coda, Koopa and Manta, Fig. 2) 

simultaneously to cover different areas of each bay during June-July 2019, aiming to do a 

complete survey of a single bay within one day. Surveys across each study site were 

conducted mostly in good sighting conditions (Beaufort Sea State ≤ 3 and no rain) between 

07:00 and 18:00, depending on suitable conditions. A crew of three observers and a skipper 

systematically searched for dolphins forward of each vessel’s beam with the naked eye. 

Once an individual or group of dolphins was sighted, on-transect effort was suspended and 

the dolphins were approached slowly (<5 knots) to within 5-10m to carry out photo-

identification and record GPS location, species identification, group size (minimum, best and 

maximum estimates), group age composition (calf, juvenile, adult as defined by Parra et al. 

2006a), and predominant group behaviour (Mann 1999a). Groups were defined as dolphins 

with relatively close spatial cohesion (i.e. each member within 100 m of any other member) 

involved in similar (often the same) behavioural activities. Photographs of individual animals 

were taken using Nikon D750 digital SLR cameras fitted with 50-500 telephoto zoom lenses. 

After all, or most individuals in the group were photographed or dolphins were lost, transect 

effort resumed at the location on the transect line where the dolphins were first sighted. Data 

on environmental variables (water depth, sea surface temperature, turbidity, and salinity) 

were collected in situ using a U-52 Horiba multi-parameter water quality meter at the location 

where each group of dolphins was first encountered, at set points along the transect line, 

and at the beginning and end of each transect leg. 
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Figure 2. Rigid hull inflatable vessels a) Manta, b) Koopa and c) Coda used for boat-based 

surveys of inshore dolphins in the Townsville region during June and July 2019. Research 

team conducting surveys of inshore dolphins in Cleveland Bay onboard vessel Manta (d). 

2.1.4 Land-based survey methods 

As part of the monitoring program we also conducted visual land-based observations 

of dolphin presence/absence in June /July 2019 from Berth 11, an elevated platform within 

the Port of Townsville (Fig. 3). Berth 11 offers a reasonable vantage point over coastal 

waters adjacent to the Port of Townsville that were previously identified as a dolphin high 

use area (Parra 2006). This area also coincides with the CU project area for land reclamation 

and widening of the channel at the harbour entrance (Fig. 3). Conducted over time, this 

method will enable us to determine the dolphins’ occurrence (presence/absence) in this area 
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and assess their response to CU project dredging and pile driving operations that occur 

within approximately 1km of this location (Pirotta et al. 2013). 

Visual scan sampling every 15 min was used to record the presence of dolphins 

(Altmann 1974, Mann 1999b), and covered a radius of approximately 1km around the 

observation point on Berth 11. Observations were conducted by a team of two trained 

observers doing one or two three-hour shifts per day between 07:00 and 17:00. Visual 

observations were mostly undertaken during good weather conditions (i.e. Beaufort sea 

state ≤ 3 and no rain) and whenever the berth was not operational. Each observer scanned 

to the left (i.e. West ) or the right-hand (i.e. East) side of the observation point with the aid 

of 7 x 50 binoculars and the naked eye. During each visual scan we recorded, within 

approximately 1km of observation point on Berth 11, the presence or absence of dolphins, 

their group size, age composition, behaviour, the number and types of boats traversing the 

area, and the presence or absence of CU construction activities including dredging and rock 

dumping.  

 

Figure 3. Location of land observation point on Berth 11 within the Port of Townsville (a), 

and researchers conducting dolphin surveys from the berth (b).  
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2.2 Data analysis: Population demographics 

We used photo-identification data collected during boat surveys to estimate the 

abundance of Australian snubfin and humpback dolphins in the study area using capture-

recapture population models. Details of the analysis involved are explained in the following 

sections (2.21-2.2.4). 

2.2.1 Photo-identification  

Capture-recapture histories of distinctive individuals were used to estimate 

abundance using capture-recapture population models (Williams et al. 2002, Amstrup et al. 

2005). An individual was considered ‘captured’ when it was first photo‐identified, and 

‘recaptured’ when photo‐identified thereafter. Individual snubfin and humpback dolphins 

were identified based on the unique natural marks on their dorsal fins (Parra and Corkeron 

2001, Parra et al. 2006a). All photographs taken during boat surveys were examined and 

subjected to a strict quality and distinctiveness grading protocol before matching and 

cataloguing to minimise misidentification (Hunt et al. 2017). Only high-quality photographs 

of distinctive individuals were used in analyses. We used DISCOVERY (version 1.2.) 

software to process, match, catalogue and manage all the photo‐identification data (Gailey 

and Karczmarski 2012). 

Both “on effort” and “off effort” sightings were combined and included in capture- recapture 

(CR) analyses. Capture history data were analysed using CAPTURE within the program 

MARK (White and Burnham 1999). 

2.2.2 Capture-recapture models 

Capture-recapture methods (Williams et al. 2002, Amstrup et al. 2005) can be used 

to estimate population sizes and rates of apparent survival (alive and in the area), temporary 

emigration and movement between sites. The Multistate Closed Robust Design model 
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(MSCRD, Brownie et al. 1993, Nichols and Coffman 1999, Kendall and Nichols 2002, 

Kendall 2013) will be fitted to estimate these parameters. The MSCRD will require, however, 

data from a minimum of three yearly samples and simpler models will need to suffice until 

such data are available. 

The MSCRD is an extension of the Closed Robust Design model (CRD, Pollock et 

al. 1990, Kendall and Nichols 1995, Kendall et al. 1997) to the case of multiple states or, in 

this case, multiple sites, that incorporates ideas from the multistate model for recapture data 

(Arnason 1972, 1973, Brownie et al. 1993, Schwarz et al. 1993). While this model will be 

fully described when it is first used, it is sufficient at present to describe the models that will 

be used in this and the next report and their relationship with the MSCRD. 

Capture-recapture methods can be broadly classified into those for populations that 

are demographically and geographically closed during sampling (no births, no deaths, no 

immigration, no emigration) – closed population models – and models for populations that 

are changing in size during sampling due to births, deaths, immigration and emigration – 

open population models (Williams et al. 2002, Amstrup et al. 2005). The population closure 

assumption – that the population under study does not change in size or composition during 

sampling – affords closed population models the capacity to model various complex effects 

that may be present in the data that cannot be accommodated by models for open 

populations. These effects include, in particular, variation in the probabilities of capture 

between the first and subsequent captures of individuals (indicating behavioural response 

to first capture – e.g., dolphins may become attracted to boats or avoidant of them), or 

between individuals due to their age, sex, parental status, previous experience with the 

capture method or other factors (individual heterogeneity of capture probabilities). Failure to 

model these effects should they be present in the data results in biased estimation of 

population size (Borchers et al. 2002, Williams et al. 2002, Amstrup et al. 2005). 
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Robust Design models nest a series of closed population models within an open 

population model and thereby attain the capacity to deal with potentially complex 

behavioural response and heterogeneity effects in estimating population sizes over a series 

of sampling events and also to yield estimates of the probability of apparent survival (the 

probability of remaining alive and present in the sampling area). Sampling for robust design 

models is hierarchical with primary samples separated by periods of time over which births, 

deaths, immigration and emigration are expected to occur with a set of secondary samples 

nested within each primary sample that are separated by relatively short periods of time over 

which the population closure assumption is reasonable. The probability that an animal was 

absent from the sampling area for the duration of a primary sample – temporary emigration 

– can also be estimated by using the differences between capture probabilities from the 

closed parts of the model and the open part (Kendall and Nichols 1995). 

Until there are sufficient data to build an open population model or fit a Robust Design 

model, closed population models may be fitted to the data from each year. The estimates 

provided by these models will be replicated when a Robust Design model is fitted to the data 

from the first three or more years’ samples but fitting them in the meantime allows 

judgements to be made about whether the sampling design is generating data that will be 

suitable for modelling with the MSCRD. 

Objective three of the IDMP for the CU Project is to monitor and report on changes, 

beyond natural spatial and temporal variation, to the population and behaviour of the snubfin 

dolphin and humpback dolphin species in the local area throughout and for a period following 

the CU Project. Such changes could include movement of substantial portions of the 

populations between the bays or out of the area entirely either permanently or temporarily 

in response to construction activities in Cleveland Bay. The MSCRD is ideally suited to the 

task of estimating such movements by modelling data collected simultaneously (ideally) and 



  

20 
 

separately in the three bays. In order that the analysis performed on the present data is as 

relevant to generating expectations for the performance of the MSCRD as possible, the data 

analysed here are those taken on the individual bays. 

2.2.3 Goodness of fit of closed population models 

Program CAPTURE (Otis et al. 1978) estimates a suite of eight alternative closed 

population models and also performs goodness of fit (GOF) tests. The models vary 

according to whether capture probabilities vary by time, differ between first and subsequent 

captures (indicating a behavioural response to first capture) or vary among individuals 

(individual heterogeneity). The GOF tests are designed to detect time (t), behaviour (b) and 

heterogeneity (h) effects and combinations of them. Given a set of data, CAPTURE can be 

tasked to select the appropriate model given the results of the GOF tests. 

It is unlikely that satisfactory estimates could be obtained for MSCRD models 

involving either behavioural response or individual heterogeneity with the relatively small 

populations studied here and the likely relatively small numbers of captures in the data. 

CAPTURE uses the results of its GOF tests to identify a preferred model for a set of data. 

Should a CAPTURE-preferred model not involve behavioural response or heterogeneity 

effects, it will be assumed that it is not necessary to attempt to model them in the MSCRD.  

2.2.4 Model selection – AIC 

In general, the modelling process involves fitting a set of models with alternative 

parameter structures and comparing them for fit to data and parsimony. Models were 

compared with the Akaike Information Criterion corrected for small sample sizes (AICc, 

Burnham and Anderson 2002), with smaller values of AICc indicating better fitting models, 

and with AICc weights, which measure the relative likelihoods of the models in the set. When 

one model in the set had a clearly lower AICc than all others and attracted the major 
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proportion of the AICc weight, the parameter estimates from this ‘best’ model are reported; 

when several models have similar AICc values and shared the AICc weight, model-

averaging may be applied (Buckland et al. 1997) whereby a weighted average of the 

parameter estimates from several models are reported. 

2.2.5 Estimating the total population size 

Not all individuals have sufficiently distinctive marks to support unambiguous 

identification. Only distinctively marked individuals may be considered to be captured in 

photographs and capture-recapture models can only yield estimates of the number of 

distinctively marked members in a population. This estimate may be adjusted to yield an 

estimate of total population size by dividing by an estimate of the proportion of distinctively 

marked individuals in the population as described below. 

For each species, the number of individuals depicted by good quality photographs (

tP ) and, of those, the number that depicted a distinctively marked individual ( mP ) was 

recorded for each group encounter. A mixed effects binary logistic model was fitted to the 

distinctiveness data on individuals with good quality photographs (1 = distinctively marked, 

0 = not distinctively marked) with group and individual within group as random factors to 

estimate the marked proportion ( pM ) of the population. Between-group variation may arise 

with natural variation in the proportion of distinctive to non-distinctive individuals. The model 

separates this variance from the variance associated with the estimated population 

proportion (Brooks et al. 2017). 

The total abundance ( totalN ) of each population for any sampling period may be 

estimated by dividing the estimated abundance of marked dolphins ( ˆ
markedN ) by the 

estimated marked proportion ( ˆ
pM ): 

( ) ( )2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  with SE( ) ( ) ( )total marked p total total marked marked p pN N M N N Var N N Var M M= = +  
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Log-normal confidence intervals for abundance estimates may be calculated 

following Burnham et al. (1987): 

( )2

2
ˆˆ ˆ ˆ ˆ ˆ ˆ and ,  where exp log 1 ( )lower upper eN N C N N C C z SE N Nα

  = = ⋅ = +    
 

2.3 Data analysis: Spatial distribution 

2.3.1 Modelling framework 

Species distribution modelling (SDM) can provide a useful analytical framework to 

investigate the environmental and anthropogenic factors affecting species distribution. The 

SDM analysis involved statistical modelling of occurrence and counts (i.e. numbers of 

dolphins as indicated by estimates of group size) of humpbacks and snubfin dolphins as a 

function of spatial-temporal covariates (Table 1). Our goal was to obtain baseline information 

on dolphin’s spatial distribution in the study area before CU project construction activities 

begin. At a mature stage of the project, with more data, the goal of the analysis will be 

inference about the spatial distribution of dolphins, especially in relation to human 

disturbances. As part of the development of a robust modelling process, the analyses 

reported in this this initial report had the following objectives: 

• experiment with feature-engineering and spatial-interpolation of spatial 

covariates; 

• develop the modelling approach; 

• trial a method to use uncertainty-in-counts (i.e., min/best/max estimates of 

group size); 

• estimate covariates importance (i.e., relative variable importance); 

• initial assessment of predictive performance (e.g., ROC-AUC and PR-AUC 

scores); 
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The modelling framework was an ensemble method known as component-wise 

gradient-boosting (Bühlmann and Yu 2003, Schmid and Hothorn 2008), specifically 

emulating the works of Kneib et al. (2009) and Hothorn et al. (2010). We selected this 

method due to its robustness to certain data-challenges, including small samples size and 

high-dimensionality (“small-n high-p problem”), and high multicollinearity among spatial 

covariates (Oppel et al. 2009, Schmid et al. 2010, Bühlmann et al. 2013, Mayr et al. 2014). 

It is also related to other high-performance methods (Meir and Rätsch 2003, Chen and 

Guestrin 2016) and can decompose variation into spatial, temporal, and observational 

covariates, as motivated by Hothorn et al. (2010). 

Our model incorporated 5 sub-components, representing different groupings of 

covariates and wrapped in different sub-models (Table 1) (in parentheses):  

1: Weather conditions affecting detectability of dolphins by observers (wrapped in a 

decision-tree); 

2: Ecological parameters and human activities (decision-tree); 

3: Temporal trends (splines); 

4: Geographical trends (bivariate spline) and 

5: Spatial-autocorrelation effects (Matern radial basis function). 
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Table 1. Covariates considered for the species distribution modelling of Australian Snubfin and humpback dolphins in Cleveland and 

Halifax Bays in 2019, with columns indicating the: i) type of sub-model used for each covariate group within the larger ensemble-of-

models, ii) the data-source for training the ensemble and iii) data source at prediction locations (how the covariate was extrapolated 

outside the points of data-collection)..  

Sub-model Model type Covariate Covariate description Source at training Source at prediction 

1 Decision tree 

Wind Windspeed from anemometer In-situ measurement Constant, average 
conditions 

BSS Beaufort Sea-State (BSS), 5 point ordinal scale In-situ estimate Constant, average 
conditions 

Swell Estimated swell height In-situ estimate Constant, average 
conditions 

Visibility Visible distance, 3 point ordinal scale In-situ estimate Constant, average 
conditions 

Glare Glare intensity, 4 point ordinal scale, summed 
two sides In-situ estimate Constant, average 

conditions 

2 Decision tree 

SST Sea surface temperature (SST) from 
multiparameter water sensor In-situ measurement Interpolated spatial 

surface 

Salinity Conductivity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

Turbidity Turbidity from multiparameter water sensor In-situ measurement Interpolated spatial 
surface 

River Distance Log-distance to coastal water-ways/estuaries GIS, derived 

(Dyall et al. 2004) Same as training 

Reef Distance Log-distance to reefs GIS, derived 

(Beaman 2012) Same as training 

Seagrass 
Distance Log-distance to seagrass meadows 

GIS, derived 

(McKenzie et al. 2014) Same as training 
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Sub-model Model type Covariate Covariate description Source at training Source at prediction 

Foreshore 
Distance Log-distance to foreshore ecotypes GIS, derived 

(Beaman 2012) Same as training 

Land Distance Log-distance to land GIS, derived 
(Beaman 2012) Same as training 

Bathymetry Average depth GIS, bathymetric DEM 
(Whiteway 2009, Beaman 2010) Same as training 

Chl-a Climatology of chlorophyll-a based on ocean 
colour 

GIS, remote sensing 

(CSIRO Oceans and 
Atmosphere, Australia) 

Same as training 

Boats Total Counts of all boats in vicinity In-situ counts Interpolated spatial 
surface 

Boats Small Counts of all boats in vicinity, small size In-situ counts Interpolated spatial 
surface 

Boats Medium Counts of all boats, medium size In-situ counts Interpolated spatial 
surface 

Boats Large Counts of all boats, large and industrial and 
ferries In-situ counts Interpolated spatial 

surface 

Boats Fishing Counts of all fishing boats and trawlers In-situ counts Interpolated spatial 
surface 

Boats 
Recreational Counts of all recreational and sailing boats In-situ counts Interpolated spatial 

surface 

Boats Industrial Counts of all barges, trawlers, tugs and other 
industrial In-situ counts Interpolated spatial 

surface 

3 Univariate 
spline 

Time-of-day Metric time at observations In-situ measurement Constant, average 
conditions 

Day-of-Year Julian-day In-situ measurement Constant, average 
conditions 

4 Bivariate 
spline Space X & Y UTMs used in spatial spline GIS Same as training 

5 Radial basis 
function Space X & Y UTMs used in spatial covariance function GIS Same as training 
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In the boosting framework, the five sub-models compete to minimise an empirical 

“risk” function (the negative log-likelihood of the zero-inflated Poisson distribution). Although 

the total model is theoretically very complex, the overall model complexity is strongly 

penalised by “tuning” regularisation hyper-parameters via leave-one-out cross-validation. 

The focal hyper-parameters were: the number of boosting iterations; depth of decision-trees, 

and the degrees-of-freedom of spatial learners.  

After tuning the hyper-parameters, we trained a final model for each species. These 

final models were used for inference, including estimating the relative variable importance 

(“contribution to risk-minimisation”; Elith et al. 2008) as well as spatial prediction of dolphin 

locations and abundance.  

Model performance was assessed by statistics including the area under the receiver-

operator curve (cv-ROCAUC) and the area under the precision-recall curve (cv-PRAUC) 

(Fielding and Bell 1997, Harrell Jr 2015). The cv-ROCAUC  measures how good the models 

are in discriminating between true and false presences and absences. The cv-PRAUC 

measures how correct (precise) the model is in predicting true positives and how sensitive 

the models are in identifying true positives (Sofaer et al. 2019). For the AUC statistics, values 

above 0.5 to 1 are considered improvement over random classification (but see below about 

the use of min/best/max counts and their possible effect on depressing these statistics).  

2.3.2 Uncertainty in group size estimates 

One innovation in the SDM was the development of a method to accommodate 

uncertainty in estimates of group size. This was motivated by our attempt to best utilise the 

dolphin-encounter data, which consisted of estimates of minimum, maximum, and best 

group size. These observations will be referred to as “min/best/max counts.” 
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The min/best/max counts were incorporated into the model by “data-augmentation”. 

Specifically, we assumed the counts followed a Truncated Poisson (TP) distribution, 

whereby each min/best/max observation parameterised a local TP: the estimated “best” 

count served as the Poisson rate parameter (a.k.a lambda), and the min and max estimates 

served as lower and upper truncation bounds. Assuming this distribution, we then calculated 

probabilities for each intermediate count between the minimum and maximum group-sizes. 

Call these probabilities “weights”. The range of counts then served as multiple pseudo-

observations for the component-wise boosting algorithm (the data-augmentation), and the 

weights controlled how much each pseudo-count contributed to the models’ log-likelihood-

function. Importantly, each group-encounter only contributed a total weight of “1” to the log-

likelihood across all pseudo-counts, ensuring informational-equality between observations 

with only a single high-certainty estimate, and group-encounters with min/best/max 

estimates. 

For example, if a dolphin encounter yielded min/best/max counts of [4, 9,10], the 

resulting TP distribution would have the follow pseudo-counts and weights: [(count: weight): 

(4: 0.04), (5: 0.077), (6: 0.121), (7: 0.165), (8: 0.195), (9: 0.206), (10: 0.196)]. In other words, 

the model sees an observation with a count of “4” with probability 0.04, and a count of “10” 

with probability 0.196, and so on. 

An advantage of this method versus just using the “best estimate” is that it is a form 

of regularisation: the realistic portrayal of count-uncertainty keeps the model from over-

learning a single “best estimate” value with artificially high precision (i.e., a “best” estimate 

does not include the actual uncertainty). Also, larger counts have more uncertainty. A 

disadvantage of the min/best/max data is that assessment statistics like the ROC-AUC and 

PR-AUC are slightly more difficult to interpret. This is because the model makes a single 

best prediction for all pseudo-counts. This means that diagnostic statistics (which expect 
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one prediction vs. one single observation) can have many more ways of being “wrong” and 

this depresses the assessment statistic (i.e. the prediction will, by design, never perfectly 

match the range of min/best/max observations). This means that the theoretically maximum 

values of the AUC statistic (max value of 1) cannot be achieved; instead the theoretical 

maximum of the AUC is much lower when using the min/best/max counts. See the 

discussion for more thoughts on this phenomenon. 

2.3.3 Spatial predictions 

The main output of the SDMs are the model themselves, with their associated ability 

to evaluate patterns such as the relationship between dolphin distribution and environmental 

variables. The best fitting model can then be used to make spatial predictions (i.e. spatial 

partial plots) of dolphins’ distribution over an area of interest. The spatial partial plots 

produced described, firstly, the probability of occurrence (presence/absence) of snubfin and 

humpback dolphins and, secondly, group size across the study area as predicted by the best 

fitting SDM. The predicted probability of occurrence and group sizes were then multiplied to 

give a prediction of relative density of snubfin and humpback dolphins in Cleveland Bay and 

Halifax Bay. 

Inference about a model’s spatial component involves some extra non-trivial steps 

and complications. This is due to the nature of the spatial data used to train the models. For 

some covariates, the data may not be readily available as a spatial layer for spatial 

prediction. For instance, in-situ measurements like temperature, turbidity and salinity were 

not available as spatial climatologies. To make spatial partial plots, we used spatial-temporal 

modelling techniques to interpolate values of the in-situ measurements (temperature, 

turbidity, salinity, boats) across the study area, at a resolution of 100m by 100m (in UTM 

coordinates). We used an ensemble of two methods:  
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• GAMs: model-averaged GAMs with soap-films spatial smooths, bi-

variate temporal splines, and univariate splines on covariates, using the R-package 

mgcv (Wood 2003).  

• Component-wise boosting: including spatial splines, bi-variate temporal 

splines, and decision-tree sub-model for spatial covariates, using the R-packages 

gamboostLSS and mboost (Hofner et al. 2012). 

The former method (mgcv) benefits from a spatial smooth that respects maritime 

boundaries and islands (unlike generic kriging methods) and includes advantageous 

features like AIC model-averaging and shrinkage on spurious effects. The latter method 

(mboost) allows automatic learning of higher-order features (such as 3-way interactions) 

and is itself a prediction-optimised ensemble method. We pooled their outputs for a final 

ensemble-based spatial interpolation. 

Both techniques allow decomposition of variation into spatial component and 

temporal components. Only the spatial components were subsequently used as an input-

features for the SDM spatial partial plots: these can be interpreted as medium-term spatial 

means that persist over many months.  

Finally, it should be noted that while the SDMs included weather covariates, like wind 

speed, swell, BSS, visibility and glare, we assumed that these covariates primarily affected 

the observers’ ability to detect dolphins. Therefore, these covariates were not used for 

spatial predictions. Instead, their marginal contributions were removed. This means that the 

SDM plots primarily represent the expected dolphins’ occurrence and abundance at 

“average” weather conditions (i.e. wind speed, swell, BSS, visibility and glare). 
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2.4 Data analysis: Patterns of attendance to the port area 

2.4.1 Land-based survey preliminary analyses 

During the early-phase of this study, we have analysed the land-based survey data 

using a combination of qualitative and descriptive statistics. These preliminary exploratory 

analyses are intended to help inform the development of future model-based analyses, as 

well as provide early impressions about how dolphins may be behaving under normal pre-

construction conditions. 

This report provides the following descriptive statistics: total dolphin counts by 

species, and their behavioural compositions (resting, foraging, socialising, and travelling). 

These dependent variables are further summarised by covariates, including: hours of day, 

presence of boats, and presence of maintenance dredging (i.e. routine dredging not 

associated with CU project that is carried out every year to remove material that has drifted 

into the channel over time and limits the access of ships). 

In addition to summaries, we also provide two preliminary statistical tests of the 

presence of dolphins under maintenance dredging. These are not anticipated to have a 

strong association but serve as a useful benchmark versus latter construction dredging. We 

used a method called the “Bayesian p-value” (Gelman 2005), which has a similar 

interpretation as classical Fisherian p-values. We used the distribution of dolphins during 

non-dredging periods as the “null model” (characterising normal conditions of the dolphins), 

and calculated the probability of seeing dolphin counts as low as that observed during 

dredging operations. Low Bayesian p-values suggest that the counts of dolphins were lower 

during dredging activities (i.e., a low-probability events according to the null-models), while 

high Bayesian p-values suggest that the counts during dredging were no different than under 

normal background conditions. 
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The above formalism is specific to the calculation of Bayesian p-values for binary-

occurrences. For counts/abundances, the same framework applies, but instead uses a 

Poisson-Gamma distribution as the null model. 

3. Results 

3.1 Population demographics  

3.1.1 Vessel based survey effort 

We travelled a total of 1767.1 km on transect effort over 15 days, between 1st June 

and 14th July, covering 936.3 km in Cleveland Bay and 830.8 km in Halifax Bay (Fig. 4, 

Table 2). As planned, we completed six survey repeats of each bay, each representing a 

secondary period. Survey effort was higher in inshore areas than in offshore areas due to 

the poor weather conditions encountered often in offshore area (Beaufort sea state > 4). 
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Figure 4. Map of survey area showing survey transects (solid black lines) and realized 

survey effort (light blue to dark red) in Cleveland and Halifax Bay in June-July 2019. Survey 

intensity scale represents the amount of times a grid cell was visited, as an approximate 

visual indicator of observational intensity (for data-summary purposes only).  
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Table 2: Summary of boat-based survey effort (total length of transects completed on 

effort) and sea state conditions encountered in Cleveland Bay (CB) and Halifax Bay (HB) 

during each complete survey (secondary period) in the 2019 primary sample (June-July).  

Bay Sec. period Date/s Inshore Offshore Sea State 

Length 

(km) 

Length 

(km) 

min max mode 

CB 1 11-13/06 140.8 10.7 0 4 3 

CB 2 14-15/06 144.8 0 0 4 2 

HB 1 15-16/06 121.2 63.3 0 4 2 

HB 2 17/06 121.2 11.9 0 3 1 

CB 3 18/06 140.8 29.2 0 3 1 

CB 4 19/06 133.4 30.1 0 3 2 

HB 3 20/06 121.2 11.2 0 3 3 

HB 4 2/07 121.2 4.8 0 3 1 

CB 5 3/07 144.8 0 0 4 1 

CB 6 11/07 144.8 16.9 0 4 3 

HB 5 12/07 121.2 0 1 3 2 

HB 6 13/07 121.2 11.9 1 4 3 

CB Total - 849.4 86.9 - - - 

HB Total - 727.7 103.1 - - - 
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3.1.2 Dolphin sightings, encounter rates and group sizes 

The vessel surveys in 2019 resulted in a total of 83 dolphin group sightings (including 

both on and off effort sightings). This consisted of 33 sightings of snubfin dolphins, 45 

sightings of humpback dolphins, and five sightings of bottlenose dolphins, and included five 

mixed species groups of snubfin and humpback dolphins (Fig. 5, Table 3). The total number 

of dolphin groups sighted on effort per km of transect surveyed varied by species and by 

survey site. Snubfin dolphin encounters were even between Cleveland and Halifax bays, 

whereas humpback dolphins were encountered more often in Halifax Bay (Table 3).  

Groups of snubfin dolphins varied in size from 1 to 16 individuals, with a mean (± SD) 

group size of 4.7 ± 3.65 (based on best estimates of group size). The group size of 

humpback dolphins ranged from 1 to 30 animals, with a mean (± SD) group size of 5.18 ± 

4.9. Bottlenose dolphins were found in groups ranging from 1 to 8 (Mean ± SD = 4.4 ± 2.6). 

Groups of all dolphin species were composed mainly of adult animals and contained similar 

numbers of juveniles and calves (Table 4). 
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Figure 5. Location and group sizes of a) Australian humpback and b) snubfin dolphins 

sighted on and off effort during 2019 boat surveys. Note that the snubfin dolphin sighting 

off the northern coast of magnetic island (b) is tentative as there was uncertainty 

associated with species identification.  

a) 

b) 
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Table 3. Number (n) and encounter rate (total number of dolphin groups sighted on effort 

per km of transect surveyed) of snubfin, humpback and bottlenose dolphins in Cleveland 

and Halifax Bays during 2019 boat surveys.  

Species 
Cleveland Bay Halifax Bay 

n Number of dolphin 
groups/km n Number of dolphin 

groups/km 

Snubfin 17 0.07 16 0.07 

Humpback 13 0.05 32 0.15 

Bottlenose 3 0.01 2 0.01 

 

Table 4. Group size and age composition of snubfin, humpback and bottlenose dolphins 

encountered during boat-based surveys in the Townsville region in 2019.  

 

 

 Group size Group age composition 

Species Min Max Mean 
(SD) 

Mean as a ratio 
(adults:juveniles:calves) 

and proportions 

No. groups with 
juvenile or calf 

present 

Snubfin 1 16 4.7 (3.6) 
8:1:1 

A:76.9%; J:11%; C:10% 
15 (45%) 

Humpback 1 30 5.18 (4.9) 
8:1:1 

A:77%; J:10.71%; C:10.22% 
28 (62%) 

Bottlenose 1 8 4.4 (2.6) 
7:1:1 

A: 66.67%; J:9.9%; C10.28% 
4 (80%) 
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3.1.3 Photo-identification and capture-recapture data 

Sixty individual snubfin and 55 individual humpback dolphins were captured (i.e., 

photo-identified) on-effort during sampling in 2019 (Table 5). When off-effort captures were 

included, these numbers increased to 61 snubfin and 60 humpback dolphins. A total of 

seven bottlenose dolphins were captured, five on-effort and two off-effort. Given the small 

number of bottlenose dolphins encountered and photo-identified during 2019, no capture-

recapture analysis was possible on this species.  

Twenty-seven snubfin dolphins were captured on-effort in Cleveland Bay and 36 in 

Halifax Bay. When off-effort captures were included, the number captured in Halifax Bay 

increased by one to 37. Three individuals were captured on-effort and none off-effort on both 

sites. Thirteen humpback dolphins were captured on-effort in Cleveland Bay and 46 in 

Halifax Bay. When off-effort captures were included, the number captured in Cleveland Bay 

increased by six to 19. Four individuals were captured on-effort and five on- plus off-effort 

on both sites. Five bottlenose dolphins were captured on-effort in Cleveland Bay and two 

were captured off-effort in Halifax Bay.  

The present objective is to assess, for snubfin and humpback dolphins, whether the 

(re)capture data on the originally-planned six secondary samples (PS_SS) are suitable or 

whether they would be better collapsed to three secondary samples (PS_SS3) for analysis, 

and whether using the off-effort together with the on-effort data would provide better data 

for analysis. Too few bottlenose dolphins were captured too few times for analysis with a 

capture-recapture model and they are not further considered here. 
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Table 5. Number of individual dolphins identified and number of captures by species, bay, on and off effort, and secondary sample. PS_SS 

refers to the originally planned six secondary samples; PS_SS3 refers to three secondary samples as collapsed from PS_SS (1 & 2 =1, 3 

& 4 = 2, 5 & 6 = 3). 

Species Bay Effort 
No of 

Individuals 
identified 

PS_SS PS_SS3 
p1s1 p1s2 p1s3 p1s4 p1s5 p1s6 p1s1 p1s2 p1s3 

Snubfin 
Cleveland 

On only 27 7 3 9 0 13 2 10 9 14 
On + off 27 7 3 9 0 13 6 10 9 14 

Halifax 
On only 36 11 1 10 0 11 11 11 10 21 
On + off 37 11 1 10 0 11 11 12 10 21 

Humpback 
Cleveland 

On only 13 0 3 10 1 0 0 3 11 0 
On + off 19 3 3 11 3 5 0 6 13 5 

Halifax 
On only 46 4 18 2 8 9 21 20 10 29 
On + off 46 4 19 2 8 9 21 21 10 29 

Bottlenose 
Cleveland 

On only 5 0 0 0 5 0 0 0 5 0 
On + off 5 0 0 0 5 0 0 0 5 0 

Halifax 
On only 0 0 0 0 0 0 0 0 0 0 
On + off 2 0 1 0 0 1 0 1 0 1 
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Considering the originally planned six secondary samples (PS_SS) and on-effort only 

captures, except for humpback dolphins in Halifax Bay, there were no captures in at least 

one of the six secondary samples, and there were very small numbers of captures (≤ 3) in 

one or more of the samples for both species on both sites. Including the off-effort captures 

increased these numbers somewhat but some zero and very small numbers of captures 

remained. 

Secondary samples with zero or very small numbers of captures contribute no or very 

little information to capture-recapture models. Thus, the data from the originally planned six 

secondary samples were inadequate to support informative capture-recapture population 

models. Fortunately, an even number of secondary samples was planned in anticipation of 

small numbers of captures being made to allow a strategy of collapsing each consecutive 

pair of secondary samples into one (1&2=1, 3&4=2, 5&6=3) to increase the per secondary 

sample numbers of captures. 

There were no zero or very small (≤ 3) numbers of captures in the on-effort only data 

in the three new secondary samples (PS_SS3) except for humpback dolphins in Cleveland 

Bay (Table 5). Inclusion of the off-effort captures removed all instances of zero or very small 

(≤ 3) numbers of captures in the three secondary sample data. 

The three secondary sample data constituted adequate numbers of captures for 

analysis, especially if the off-effort captures were included. If the spatial distribution of off-

effort captures were correlated with the spatial habitat use of sub-groups of dolphins, 

inclusion of the off-effort data might have introduced heterogeneity of capture probabilities 

into the data. This question is addressed in the section on goodness of fit. 
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3.1.4 Goodness of fit 

The CAPTURE preferred models (Table 6) indicate that sufficient evidence was not 

found to require models which accommodate either behavioural response to first capture or 

individual heterogeneity of capture probabilities for either the on-effort only or on-plus off-

effort data. Indeed, the same models were preferred for both the on-effort only and on-plus 

off-effort data indicating that inclusion of the off-effort data had not introduced heterogeneity 

effects. 

Table 6. Program CAPTURE-preferred models for the capture-recapture data on each 

species in each bay and for the on-effort only and on-plus off-effort captures. No preferred 

model had behavioural or heterogeneity effects. Model M0 has a constant capture 

probability while model Mt has capture probability varying by secondary sample (PS_SS3). 

Species Bay On + Off Effort On Effort Only 

Snubfin Cleveland M0 M0 
Halifax M0 M0 

Humpback Cleveland Mt NA* 
Halifax Mt Mt 

*NA indicates that CAPTURE would not run: there were too few data in only two non-zero samples. 

3.1.5 Models 

Closed population models were run in Program Mark (V8.1, White and Burnham 

1999) on the three-secondary sample (PS_SS3) on- plus off-effort capture-recapture data 

on snubfin and humpback dolphins in Cleveland and Halifax Bays. No model with either 

behavioural response to first capture or individual heterogeneity of capture probabilities was 

attempted. All the best-fitting (lowest AICc) models had time-varying capture probabilities 

(model Mt) except for snubfin dolphins in Cleveland Bay for which a single, constant capture 

probability was adequate. (model M0). The model with the lower AICc was chosen for 
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interpretation. The parameter estimates, their standard errors and 95% confidence intervals 

are shown in Table 7. 

Table 7. Parameter estimates, their standard errors (SE) and 95% confidence intervals 

(lower and upper limits) from closed population models fitted to the on- plus off-effort data 

on snubfin and humpback dolphins in Cleveland and Halifax Bays. Parameters p1, p2 and 

p3 are capture probabilities in the first, second and third secondary samples respectively, 

Nm is the estimate of the “marked” population size 

Species Bay Parameter Estimate SE L95%CI U95%CI 

Snubfin 

Cleveland 

p1 0.20 0.069 0.10 0.37 
p2 0.20 0.069 0.10 0.37 
p3 0.20 0.069 0.10 0.37 
Nm 54 16.36 36 108 

Halifax 

p1 0.13 0.056 0.06 0.29 
p2 0.11 0.049 0.05 0.25 
p3 0.23 0.088 0.11 0.45 
Nm 89 28.69 56 180 

Humpback 

Cleveland 

p1 0.20 0.093 0.07 0.44 
p2 0.43 0.154 0.18 0.72 
p3 0.17 0.083 0.06 0.39 
Nm 30 8.68 22 62 

Halifax 

p1 0.29 0.073 0.17 0.45 
p2 0.14 0.047 0.07 0.26 
p3 0.41 0.090 0.25 0.59 
Nm 71 12.00 57 107 

 

3.1.6 Total population sizes 

The estimated proportions of marked dolphins were 0.914 (SE=0.025) for the snubfin 

population and 0.890 (SE=0.031) for the humpback population. These estimates were used 

to estimate the total population sizes from the estimated sizes of the populations of marked 

dolphins shown in Table 8. The total number of snubfin dolphins using Cleveland Bay and 

Halifax Ba was estimated at 54 (95% CI = 33-106) and 89 (95% CI = 52-181) individuals, 
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respectively. (Table 8). The total population size of humpback dolphins was estimated at 30 

(95% CI = 19-59) individuals for Cleveland Bay and at 71 (95% CI = 57-112) individuals for 

Halifax Bay.  

Table 8. Estimated sizes of the total populations of snubfin and humpback dolphins in 

Cleveland Bay and Halifax Bay with their associated standard errors (SE), coefficients of 

variance (CV) and lognormal 95% confidence intervals (lower and upper limits). 

Species Bay Parameter Estimate SE CV L95%CI U95%CI 

Snubfin Cleveland Ntotal 54 17.97 0.33 33 106 
Halifax Ntotal 89 31.50 0.35 52 181 

Humpback Cleveland Ntotal 30 9.82 0.33 19 59 
Halifax Ntotal 71 13.77 0.19 57 112 

 

3.2 Spatial distribution 

The species distribution models provided preliminary exploratory analyses intended 

to help inform the development of future model-based analyses, as well as provide early 

impressions about how dolphins may be distributed under normal pre-construction 

conditions. These models will be fine-tuned as more data become available and we refine 

the relevant covariates to include in the models. 

There were 34 encounters of snubfin and 40 of humpbacks dolphins with associated 

estimates of group size and measurement of environmental conditions that were used for 

the SDM modelling. The positive-counts were modelled together with “pseudo-zeros”, i.e., 

locations where environmental samples were collected but there were no dolphin 

observations. For each species, there were 592 pseudo-zeros for snubfins and 584 pseudo-

zeros for humpbacks. The large number of pseudo-zeros vs. positive observations 

motivated the use of a zero-inflated count distribution. 
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The final model for humpbacks had tuned hyper-parameters: 1309 boosting 

iterations, a learning rate of 0.018, a decision-tree maximum depth of 3, and spatial degrees-

of-freedom of 10 (long-distance effects) and 12 (spatial-auto-correlation). The final model 

for snubfins was similar but ran for 1919 iterations, and a learning-rate of 0.022.  

The spatial partial plots of humpback and snubfin dolphin across the survey area are 

shown in Figures 6 and 7 respectively. The plots show the probability of occupancy and 

group size, which are the two components of the zero-inflated Poisson model. The plots also 

show the integration of the two processes, the relative density, which is the probability of 

occupancy multiplied by the conditional abundance. Note that the influence of temporal 

covariates (time-of-day, day-of-year) and environmental conditions (swell, wind, BSS, glare, 

visibility) have been set to their global averages.  

Excluding the effects of temporal variation, the spatial partial plots indicate that 

humpback dolphin occupancy (Fig. 6a), group size (Fig. 6b) and relative density (Fig. 6c) 

tended to be higher in Cleveland Bay for inshore waters between the Port of Townsville and 

Magnetic Island, and for inshore and offshore waters around the centre of Halifax Bay. There 

is a low-level of occupancy (less than 0.25, Fig. 6a) across the entire study area, reflecting 

the mobile nature of the species and that, for any given point in time, even areas of high-

relative occupancy will not have consistent presence of dolphins. The spatial partial plots of 

group size indicate that large groups (>10 animals) were more likely to be seen in inshore 

waters around the mouth of Ross River, the port and east towards Alligator Creek in 

Cleveland Bay. The spatial partial plot of density (probability of occupancy times group size) 

across the study area shows small number of animals (less than 2) across most of the study 

area, except for inshore waters between the Port of Townsville and Magnetic Island (Fig. 

6c). For snubfin dolphins, areas of high probability of occurrence were predicted to occur 

mainly towards the centre of Cleveland Bay between the Port of Townsville and Cape 
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Cleveland to the east, between Magnetic Island and Cape Pallarenda, and the central and 

northern inshore and offshore areas of Halifax Bay (Fig. 7). The occupancy plot shows 

several large regions of relative higher occupancy, suggesting more spatial homogeneity 

than the humpbacks; however, the spatial partial plots of group size is much more 

punctuated in certain locations (i.e. large groups of > than 6 animals), such as in the middle 

of Cleveland Bay and to the east of Magnetic island and the upper-north-east quadrant of 

Halifax Bay, such that, overall, the relative density of snubfin dolphins is high in a few smaller 

regions within Cleveland Bay and Halifax Bays.  

Some spatial artefacts and odd-patterns in the partial-plots deserve some attention. 

For example, the apparent “jagged-teeth”-like pattern for dolphins along the coast of Halifax 

Bay is a reflection of the poor-spatial resolution of the Chl-a data. In this case, the Chl-a 

values along the coast are contributing to missing data that was excluded from modelling. 

Future efforts will try to rectify this missingness. 

Counts may vary due to non-spatial effects, like time-of-day (especially for snubfin, 

as indicated by the RVIs statistics). Although these models provide an indication of the mean 

spatial distribution of snubfin and humpback dolphins across the whole study area, the final 

models had poor predictive ability according to model performance statistics. The area under 

the receiver-operator curve (cv-ROCAUC) score for snubfins was 0.61, while the area under 

the precision-recall curve (cv-PRAUC) was 0.25. For humpbacks, the cv-ROC-AUC score 

was 0.57, while the cv-PR-AUC score was 0.23. The cv-ROCAUC scores suggest that the 

models had slightly-better-than random predictive ability, while the cv-PRAUC scores 

suggest that the models were inadequately learning the positive-cases, and over-fixated on 

the negative cases. Inspections of plots of the prediction-vs-observation suggest that the 

models had difficulty distinguishing zeros from encounters of just one dolphin. 
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Figure 6. Spatial partial plots of humpback dolphins from ensemble-modelling of species 

distribution across the survey area based on data collected in 2019: (a) shows how the 

probability of dolphins’ presence/absence varies spatially over the study area, (b) shows 

how group size varies spatially, and (c) shows the relative density (probability of occupancy 

times group size) of humpback dolphins across the bays. 

a) 

b) 

c) 
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Figure 7. Spatial partial plots of snubfin dolphins from ensemble-modelling of species 

distribution across the survey area based on data collected in 2019: (a) shows how the 

probability of dolphins’ presence/absence varies spatially over the study area, (b) shows 

how group size varies spatially, and (c) shows the relative density (probability of occupancy 

times group size) of humpback dolphins across the bays.

a) 

b) 

c) 
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The relative variable importance (RVI) are shown in Figure 8. Variable importance 

scores measure how much each covariate contributes to reduction in the model risk-function 

(negative log-likelihood). For both species, the majority of RVI was allotted to spatial-

processes (spatial spline and Matern radial-basis-function), rather than known spatial 

covariates. For humpbacks, the second most import covariate was the presence of fishing 

boats (half the RVI as the 1st-ranking covariate), then water depth/bathymetry. For snubfin, 

the unexplained spatial processes had an RVI that was greater than 60% of the total risk-

reduction, followed by time-of-day(hours) which constituted 1/5 of the total risk-reduction. 

One should keep-in-mind that ensemble-modelling plus multi-collinearity among 

environmental predictors means that individual RVIs could be artificially depressed. 

As explained by Bühlmann et al (2013), model-averaging methods and ensemble 

methods with correlated variables mean that the ensemble is pooling information from 

across multiple variables, rather than uniquely attributing high-variable importance (RVI) to 

any single variable (e.g., as compared to a model with a single uncorrelated variable). 

However, for prediction (rather than attribution), it is better to include covariates that are 

somewhat correlated (<0.7) rather than exclude them. In the discussion, we talk more about 

exploring alternative inference frameworks (e.g., AIC model averaging) for better isolating 

which covariates may be influential. 
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Figure 8. The relative variable importance (contribution to risk-minimisation) of each 

covariate considered in ensemble species distribution modelling of Australian humpback (a) 

and snubfin dolphins (b) in the Townsville region based on data collected in 2019.   
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3.3 Patterns of attendance to the port area 

3.3.1 Land based survey effort 

We were able to conduct land-based observations on 17 days between the 1st of June 

and the 14th of July, completing a total of 870 scans of the coastal waters (within 

approximately 1 km) adjacent to Berth 11 (Table 9). Out of the 17 days surveyed snubfins 

were seen on 9 days, humpback on 10 days, and bottlenose on 1 day. There were more 

observations of snubfins than humpbacks (present in 50 vs 20 scans, Table 9).  

Table 9. Survey effort and dolphins observed from Berth 11 at the Port of Townsville 

during June-July 2019  

Date Number of 
scans 

Number of scans 
with humpback 

dolphins present 

Number of 
scans with 

snubfin 
dolphins 
present 

Number of scans 
with bottlenose 

dolphins present 

3/06/2019 46 0 8 0 

4/06/2019 46 1 3 0 

5/06/2019 46 0 13 0 

6/06/2019 68 4 5 0 

12/06/2019 46 3 0 0 

13/06/2019 58 1 0 0 

14/06/2019 47 0 0 0 

15/06/2019 61 4 0 1 

17/06/2019 47 0 6 0 

18/06/2019 60 1 3 0 

26/06/2019 60 0 4 0 

27/06/2019 48 2 1 0 

30/06/2019 60 0 0 0 

1/07/2019 31 0 0 0 

2/07/2019 52 3 6 0 

3/07/2019 43 0 0 0 

6/07/2019 51 1 1 0 

TOTAL 870 20 50 1 
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3.3.2 Diel and behavioural patterns observed 

Both snubfin and humpback dolphins were observed mainly foraging, followed by 

travelling (Table 10) throughout the day (Fig. 9). Snubfins dolphin sightings peaked at 07:00-

9:00 in the morning and at 13:00-15:00 in the afternoon. Humpback dolphin sightings 

peaked at 09:00-11:00 in the morning and 15:00-17:00 in the afternoon (Fig.9). Snubfin 

dolphins seemed to exhibit a slight bar-bell distribution in their propensity for foraging, 

whereby they foraged more during the early morning and late-afternoon (Fig. 9). Humpback 

dolphins had a more even distribution, with animals seen foraging in similar proportions 

throughout the day, with peaks in travelling during the morning (09:00-11:00) and towards 

the end of the day (15:00-17:00) (Fig. 9).  

Table 10. The total number of scans where either species was present (out of 870 scans) 

and the proportion of times they were observed engaged in foraging, resting, socializing and 

travelling behavior.  

Species 

Number of 
Scans with 

Species 
Present 

Foraging Resting Socialising Travelling 

Snubfin 50 0.61 0.02 0.04 0.33 

Humpback 20 0.52 0 0 0.48 
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Figure 9. Snubfin (a) and humpback dolphin (b) observations by time of day (2 hourly 

bins). Bar height represents densities of counts (number of dolphins seen divided by 

number of scans); bar compositions represent proportion time observed in various 

behaviours.   
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3.3.3 Dolphins patterns of occurrence in relation to boats and maintenance dredging  

As observations took place during pre-construction period of the CU project, no 

construction activities (dredging and rock dumping) associated with the CU project were 

recorded. Snubfin and humpback dolphin occurrence and behaviour showed no distinct 

patterns in relation to the presence of boats recorded within approximately 1km of 

observation platform (Fig. 10). Both species were seen mainly travelling and foraging while 

different number of boats were in the area. The majority of vessels observed from Berth 11 

during dolphin scans were recreational vessels (52%), passenger vessels (19%), 

tugs/barges (12%), sailboats (11%), and fishing vessels (5%). 

Out of the 870 scans carried out from Berth 11, maintenance dredging activities 

(located within 1km of observation platform on Berth 11) were recorded during nine scans. 

While there were no observations of dolphins, of either species, during the maintenance 

dredging activities (Table 11), the P-Bayes statistics (>0.05) suggest that the probability of 

observing no-dolphins was consistent with the background/null distribution of dolphin-

occupancy during normal non-dredging scans. In other words, the absence of dolphins 

during maintenance dredging cannot be considered unusual. 
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Figure 10. Number of observations of (a) snubfin and (b) humpback dolphins per scan and 

their respective behaviour versus the total number of boats (of all kinds) present in the area 

while doing observation from Bert 11 at the Port of Townsville in June-July 2019.   
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Table 11. Land-based occurrences of snubfin and humpback dolphins from Berth 11 during 

maintenance dredging and non-dredging operations in June-July 2019.  

Species 
Maintenance 

Dredging 
Presence 

N-scans N Occurrences of 
Dolphins P-Bayes 

Snubfin 
no 861 50 NA 

yes 9 0 0.55 

Humpback 
no 861 20 NA 

yes 9 0 0.77 

 

  



 

55 
 

4. Discussion and conclusions 

4.1 Survey effort 

The 2019 pre-construction monitoring of inshore dolphins for the Port of Townsville 

proceeded well despite some weather and logistical constraints. As planned, we were able 

to repeat six full surveys of Cleveland and Halifax Bay between June-July. Most survey effort 

focused on inshore waters due to predominant unfavourable conditions (Beaufort Sea State 

> 4) encountered in offshore transects.  

We were not able to survey Bowling Green Bay due to boat-ramp inaccessibility at 

Cape Fergusson due to floods and rain earlier in the year. Thus, we were not able to 

generate estimates of abundance or gain insights into the spatial distribution of snubfin and 

humpback dolphins in this area pre-construction activities. Given the allotted time for 

conducting the vessel surveys (40 days) and needed survey repeats (six), future surveys in 

Bowling Green Bay will depend highly on boat ramp access at Cape Fergusson. The only 

other available boat ramps providing safe access to Bowling Green Bay (Morrisey’s Creek 

and Haughton River boat ramps) with our boats are more than an hour away by car from 

Townsville, require significant travel through rivers (more than 30 mins) to make it out to 

coastal waters, and are highly tide dependant. Thus, making it impractical given the planned 

allotted time to conduct the surveys. Collecting dolphin data in Bowling Green Bay would be 

beneficial in understanding the local dolphin populations, but If the boat ramp at Cape 

Ferguson is not operational in the future, we recommend continuing to focus survey effort 

on Cleveland Bay and Halifax Bay.  

4.2 Estimates of Abundance 

As previous studies have shown, Australian humpback and snubfin dolphins are the 

most common dolphin species found in coastal waters of the Townsville region. Adequate 
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data were available to obtain estimates of abundance for snubfin and humpback dolphins in 

Cleveland Bay and Halifax Bay using closed capture-recapture population models. In the 

future, similar data collected over three years will support the use of Multistate Closed 

Robust Design models (MSCRD) to estimate rates of apparent survival (alive and in the 

area), temporary emigration and movement between sites in addition to population sizes.  

Both snubfin and humpback dolphins were more abundant in Halifax Bay than in 

Cleveland Bay. Although not directly comparable due to differences in study design (i.e. the 

transect layout and the areas covered by previous studies are different from present study), 

estimates of abundance from 2019 fall within the ranges of historical estimates in the region. 

This indicates that the coastal waters off Cleveland Bay and Halifax Bay continue to support 

important populations of Australian snubfin and humpback dolphins. The estimates from 

present survey indicated 54 (95% CI = 33-106) and 89 (95% CI =52-181) snubfin dolphins 

used Cleveland Bay and Halifax Bay, respectively, and about 30 (95% CI = 19-59) 

humpback dolphins used Cleveland Bay and 71 (95% CI = 57-112) Halifax Bay. Surveys 

from 1999-2002 covering the coastal area of Cleveland Bay and southern Halifax Bay (i.e. 

from Cape Pallarenda to Black River Mouth) indicated the total population size of snubfin 

dolphins for this whole area ranged from 64 (95% CI=51–80) individuals in 2001 to 76 (95% 

CI=65–88) in 2000, and from 34 (95% CI=24–49) humpback dolphins in 2001 to 54 (95% 

CI=38–77) in 2002 (Parra et al. 2006a). The most recent surveys conducted between May 

and September 2016 in Cleveland Bay and southern Halifax Bay (i.e. from Cape Pallarenda 

to Bluewater Creek/Saunders Beach)  estimated 133 (95% CI=90-196) snubfin dolphins and 

86 (5% CI = 70-106) humpback dolphins (Beasley et al. 2016). It is important to note that 

the2016 estimates were plagued by the presence of heterogeneity in capture probabilities 

for which there were too few data to deal with adequately. Heterogeneity in capture 

probabilities can lead to large biases in abundance estimates when using models assuming 

no heterogeneity (Amstrup et al. 2005). Thus, it is difficult to assess if the apparent increase 
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in dolphins in 2016 represents a true increase in the number of dolphins using this area or 

is simply a result of biases in abundance estimation.  

The estimated capture probabilities (mostly p ≥ 0.20) were adequate to support 

reliable population size estimates with a relatively good precision (CVs ranging from 0.19 to 

0.35). The estimated population sizes for snubfin and humpback dolphins were however, 

associated with wide 95% confidence intervals. We expect the confidence intervals on future 

population size estimates from an MSCRD model to be narrower than those obtained from 

closed population model estimates due to parameter sharing and a higher data to 

parameters ratio. The use of the planned MSCRD model in the future and the estimation of 

movements between sites, and temporary emigration in addition to abundance will depend 

highly on obtaining as good or better capture probabilities as those obtained here.  

4.3 Spatial distribution 

Preliminary species distribution models of occupancy, group size and relative density 

of dolphins across the study area indicated that both species were mainly using the coastal 

inshore waters of Cleveland Bay and the central and northern inshore and offshore waters 

of Halifax Bay. As indicated in previous studies, the area around the port of Townsville, 

mouth of Ross River, and east towards Alligator Creek continues to be an area of high 

probability of occurrence for both species within Cleveland Bay. The high use of inshore 

waters by both species in Cleveland Bay and Halifax Bay have been observed in previous 

studies (Parra 2006, Nagombi 2018), indicating the importance of coastal habitats for these 

species.  

With just a few dozen observations of either snubfin and humpback dolphins, the 

species distribution modelling exercise was effectively an exploration of the data and 

modelling approach. The exercise served to probe the data and models for challenges. In 
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particular, the current analyses highlighted some key-points that require attention to 

strengthen future analysis, when more data is available:  

1. Inference Framework. The current modelling framework, ensemble modelling via 

component-wise boosting, is a high-performance prediction method whose primary 

use is spatial prediction and derivation of Relative Variable Importance indices (Elith 

et al. 2008). The current analysis demonstrated the kinds of inferences and outputs 

that are possible with the technique, but also highlighted how they do not readily lend 

themselves to rigorous hypothesis-testing that will be important in later stages of the 

project. The boosting/RVI framework should be complimented with other statistics 

that have better-known properties and interpretations. Within the same framework, 

there is the possibility of using machine-learning techniques like “stability selection” 

(Shah and Samworth 2013) to derive p-values and/or inclusion probabilities that can 

be used for hypothesis testing. Additionally, we should complement such analyses 

with more-familiar semi-parametric methods that have tractable AIC-statistics, such 

as spatial GAMS (e.g., mgcv package). Such GAMs can provide both high-

performance prediction and allow calculation of familiar AIC-based statistics, such as 

AIC model-weights and evidence ratios (Taper and Ponciano 2016). Although not 

discussed in this report, these have been presently explored and should be available 

in future reports. 

2. Zero-inflation and data-sparsity. In the future, and with more years of data, the 

imbalance between zero-encounter and positive encounters will likely remain highly 

skewed towards the zeros. The current analysis attempted to handle this imbalance 

with a zero-inflated count distribution. With more data, it would be prudent to test 

several candidate distributions, such as Tweedie or Negative Binomial distributions, 

or explore re-weighting the model-likelihood to favour learning about the positive 
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counts, rather than over-learn the zero-counts (which are not really “zeros” in the 

sense that dolphins were never at such locations). 

3. Min/max/best counts. The current analysis used a novel data-augmentation 

technique to leverage the uncertainty in the group size data (i.e., group encounters 

had minimum, maximum, and best estimates of group size). This technique, however, 

meant that the traditional model-diagnostic statistics were artificially depressed (such 

as the ROC-AUC). Future analyses should use simulations to re-scale these statistics 

and present a better picture of the overall adequacy of the SDM models. 

4. Covariates spatial and temporal resolution. The performance of species 

distribution models is influenced by deficiencies and biases in the covariates used to 

build the models. Ideally, species observations and environmental variables are 

measured at the same spatial and temporal resolution, however this is hardly the 

case due to the time and resources needed to do so. We attempted to make use of 

most of the relevant and up-to-date spatial data available on environmental variables 

known or suspected to affect dolphins’ spatial distribution. Some of these datasets 

unfortunately offered poor-spatial resolution for inshore areas (e.g. Chl-a) or are 

outdated (e.g. seagrass cover). Thus, some of the spatial relationships and 

predictions show here may be biased and thus could have affected model’s 

performance. In the future, we will use more up to date spatial data if available, or 

filter covariates identified here as providing poor spatial and temporal resolution.  

4.4 Patterns of attendance to the port area 

Land-based observations from Berth 11 within the Port of Townsville were feasible 

throughout the day on good weather conditions and yielded unprecedented data on the 

patterns of occurrence of snubfin and humpback dolphins in inshore waters adjacent to the 

Port. Land-based observations from Berth 11 corroborated the frequent use by both dolphin 



 

60 
 

species of the coastal waters close to the Port of Townsville, mainly for foraging and 

travelling activities as has been shown in the past (Parra 2006, Nagombi 2018). 

Furthermore, we show that both species are using this area throughout different times of the 

day, with particular peaks in the morning and afternoon. Land based observations also 

indicated that present levels of maintenance dredging and vessel traffic do not seem to 

influence the patterns of attendance and behaviour of dolphins around the port area. These 

observations will serve as a strong baseline on which to compare future patterns of 

attendance and behaviour of snubfin and humpback dolphins during construction and post 

construction activities.  
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